java8 - 終端操做

匹配

anyMatch

字符串數組中是否有長度爲1的字符串

有一個匹配到就返回true數組

public static void anyMatch() {
    boolean anyMatch = Stream.of("1", "2", "3", "11", "22", "33").anyMatch((str) -> str.length() == 1);
    System.out.println(anyMatch);
}

allMatch

字符串數組中是否有長度都小於3的字符串
public static void allMatch() {
    boolean allMatch = Stream.of("1", "2", "3", "11", "22", "33").allMatch((str) -> str.length() < 3);
    System.out.println(allMatch);
}

noneMatch

字符串數組中是否有長度都沒有大於3的字符串
public static void noneMatch() {
    boolean noneMatch = Stream.of("1", "2", "3", "11", "22", "33").noneMatch((str) -> str.length() > 3);
    System.out.println(noneMatch);
}

anyMatch一個匹配就行,allMatch是全匹配,noneMatch和allMatch相反,全不匹配。anyMatch、 allMatch和noneMatch這三個操做都用到了短路,這就是你們熟悉的Java中&&和||運算符短路在流中的版本。app

查找

findFirst

返回第一個元素
public static void findFirst() {
    Optional<String> first = Stream.of("1", "2", "3", "11", "22", "33").findFirst();
    System.out.println(first.get());
}

獲取第一個元素,有可能爲空,返回值爲Optional。spa

findAny

返回任意一個元素
public static void findAny() {
    Optional<String> findAny = Stream.of("1", "2", "3", "11", "22", "33").parallel().findAny();
    System.out.println(findAny.get());
}

返回任意一個,有可能爲空,返回值爲Optional。code

規約

reduce

求和
public static void sum() {
    int sum = 0;
    int[] arr = new int[]{1, 2, 3, 4};
    for (int num : arr) {
        sum += num;
    }
    System.out.println(sum);
}

public static void reduce1() {
    Integer reduce = Stream.of(1, 2, 3, 4).reduce(0, (a, b) -> a + b);
    //Integer reduce = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
    System.out.println(reduce);
}

public static void reduce2() {
    Optional<Integer> reduce = Stream.of(1, 2, 3, 4).reduce((a, b) -> a + b);
    System.out.println(reduce.get());
}

第一個方法,是1.7以前的。
第二個方法用的是reduce,redue第一個參數是初始值,這邊是0,後面是BinaryOperator。
第三個方法,與第二個不一樣的是沒有初始值,返回值是Optional。
大概流程以下:blog

  1. (a,b) -> a+b,初始值賦值給a,數組的第一個元素1賦值給b,相加後得1。
  2. (a,b) -> a+b,獲得的1賦值給a,數組的第二個元素2賦值給b,相加後得3。
  3. (a,b) -> a+b,獲得的3賦值給a,數組的第三個元素3賦值給b,相加後得6。
  4. (a,b) -> a+b,獲得的6賦值給a,數組的第四個元素4賦值給b,相加後得10。

最大值和最小值

求最大值和最小值
public static void max1() {
    Integer max = Stream.of(1, 2, 3, 4).reduce(0, Integer::max);
    System.out.println(max);
}

public static void max2() {
    Optional<Integer> max = Stream.of(1, 2, 3, 4).max(Integer::compareTo);
    System.out.println(max.get());
}

public static void min() {
    Optional<Integer> min = Stream.of(1, 2, 3, 4).min(Integer::compareTo);
    System.out.println(min.get());
}

第一個方法是reduce求最大值,第二個是經過max求最大值,第三個是經過min求最小值。ci

collect

下面例子要用的Person類,成員變量有name和sex,以及set、get、toString方法。
getPerson方法:獲取List<Person>字符串

public static List<Person> getPerson() {
    return Arrays.asList(new Person("張三", 1), new Person("李四", 1), new Person("王五", 2));
}

counting

統計人員的個數
public static void counting() {
    List<Person> list = getPerson();
    System.out.println(list.stream().collect(Collectors.counting()));
    System.out.println(list.stream().count());
}

最大值和最小值

求最大值和最小值
public static void maxBy() {
    Optional<String> maxBy = Arrays.stream(new String[]{"a", "c", "d"}).collect(Collectors.maxBy(String::compareToIgnoreCase));
    System.out.println(maxBy.get());
}

public static void minBy() {
    Optional<String> minBy = Arrays.stream(new String[]{"a", "c", "d"}).collect(Collectors.minBy(String::compareToIgnoreCase));
    System.out.println(minBy.get());
}

求和及求平均值

求和及求平均值
public static void summingInt() {
    int sum = Arrays.stream(new Integer[]{1, 2, 3, 4}).collect(Collectors.summingInt(i -> i));
    System.out.println(sum);
    //summingDouble、summingLong
}

public static void averagingInt() {
    double avg = Arrays.stream(new Integer[]{1, 2, 3}).collect(Collectors.averagingInt(i -> i));
    System.out.println(avg);
    //averagingDouble、averagingLong
}

summingDouble、summingLong相似於summingInt。
averagingDouble、averagingLong相似於averagingInt。get

summarizingInt

求總數、最大值和最小值、求和和平均值
public static void summarizingInt() {
    IntSummaryStatistics intSummaryStatistics = Arrays.stream(new Integer[]{1, 2, 3}).collect(Collectors.summarizingInt(i -> i));
    System.out.println(intSummaryStatistics);
    //summarizingDouble、summarizingLong
}

運行結果以下:
image.png
summarizingDouble、summarizingLong相似於summarizingInt。it

鏈接字符串

拼接數組的字符串
public static void joining() {
    String joining1 = Arrays.stream(new String[]{"a", "c", "d"}).collect(Collectors.joining());
    String joining2 = Arrays.stream(new String[]{"a", "c", "d"}).collect(Collectors.joining(","));
    String joining3 = Arrays.stream(new String[]{"a", "c", "d"}).collect(Collectors.joining(",", "prefix", "suffix"));
    System.out.println(joining1);
    System.out.println(joining2);
    System.out.println(joining3);
}

運行結果以下:
image.png
參數有分隔符、前綴、後綴。io

規約

對數組進行計算
public static void reducing() {
    Integer reducing1 = Stream.of(1, 2, 3, 4).collect(Collectors.reducing(0, (a, b) -> a + b));
    Optional<Integer> reducing2 = Stream.of(1, 2, 3, 4).collect(Collectors.reducing((a, b) -> a + b));
    Integer reducing3 = Stream.of(1, 2, 3, 4).collect(Collectors.reducing(0, i -> i * i, (a, b) -> a + b));
    System.out.println(reducing1);
    System.out.println(reducing2.get());
    System.out.println(reducing3);
}

運行結果以下:
image.png
reducing1是以0爲初始值,對數組進行累加。
reducing2沒有初始值,對數組進行累加,返回的是Optional。
reducing3,把數組的數字轉換爲平方數,再進行累加。

分組

經過性別分組
public static void groupingBy() {
    List<Person> list = getPerson();
    Map<Integer, List<Person>> groupingBy = list.stream().collect(Collectors.groupingBy(Person::getSex));
    System.out.println(groupingBy);
}

運行結果以下:
image.png
groupingByConcurrent相似於groupingBy,只是返回的是ConcurrentMap

分區

經過性別分區
public static void partitioningBy() {
    List<Person> list = getPerson();
    Map<Boolean, List<Person>> partitioningBy = list.stream().collect(Collectors.partitioningBy(person -> 1 == person.getSex()));
    System.out.println(partitioningBy);
}

運行結果以下:
image.png

toList

輸出list
public static void toList() {
    List<Person> list = getPerson();
    List<Person> toList = list.stream().collect(Collectors.toList());
    System.out.println(toList);
}

toSet

輸出set
public static void toSet() {
    List<Person> list = getPerson();
    Set<Person> toSet = list.stream().collect(Collectors.toSet());
    System.out.println(toSet);
}

輸出map

把Person的name做爲key,sex做爲value,輸出map
public static void toMap() {
    List<Person> list = getPerson();
    Map<String, Integer> toMap = list.stream().collect(Collectors.toMap((person) -> person.getName(), (person) -> person.getSex()));
    System.out.println(toMap);
}

toConcurrentMap相似於toMap,只是返回的是ConcurrentMap

collectingAndThen

獲取到Person後再取toString的集合
public static void collectingAndThen() {
    List<Person> list = getPerson();
    String str = list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), persons -> persons.toString()));
    System.out.println(str);
}

mapping

先把Person映射成name,再輸出集合
public static void mapping() {
    List<Person> list = getPerson();
    List<String> collect = list.stream().collect(Collectors.mapping(person -> person.getName(), Collectors.toList()));
    System.out.println(collect);
}
相關文章
相關標籤/搜索