JVM性能調優(轉)

本文轉自:http://www.cnblogs.com/chen77716/archive/2010/06/26/2130807.htmlhtml

最近因項目存在內存泄漏,故進行大規模的JVM性能調優 , 現把經驗作一記錄。java

1、JVM內存模型及垃圾收集算法算法

 1.根據Java虛擬機規範,JVM將內存劃分爲:sql

  • New(年輕代)
  • Tenured(年老代)
  • 永久代(Perm)

  其中New和Tenured屬於堆內存,堆內存會從JVM啓動參數(-Xmx:3G)指定的內存中分配,Perm不屬於堆內存,有虛擬機直接分配,但能夠經過-XX:PermSize -XX:MaxPermSize 等參數調整其大小。apache

  • 年輕代(New):年輕代用來存放JVM剛分配的Java對象
  • 年老代(Tenured):年輕代中通過垃圾回收沒有回收掉的對象將被Copy到年老代
  • 永久代(Perm):永久代存放Class、Method元信息,其大小跟項目的規模、類、方法的量有關,通常設置爲128M就足夠,設置原則是預留30%的空間。

New又分爲幾個部分緩存

  • Eden:Eden用來存放JVM剛分配的對象
  • Survivor1
  • Survivro2:兩個Survivor空間同樣大,當Eden中的對象通過垃圾回收沒有被回收掉時,會在兩個Survivor之間來回Copy,當知足某個條件,好比Copy次數,就會被Copy到Tenured。顯然,Survivor只是增長了對象在年輕代中的逗留時間,增長了被垃圾回收的可能性。

 2.垃圾回收算法服務器

  垃圾回收算法能夠分爲三類,都基於標記-清除(複製)算法:多線程

  • Serial算法(單線程)
  • 並行算法
  • 併發算法

  JVM會根據機器的硬件配置對每一個內存代選擇適合的回收算法,好比,若是機器多於1個核,會對年輕代選擇並行算法,關於選擇細節請參考JVM調優文檔。併發

  稍微解釋下的是,並行算法是用多線程進行垃圾回收,回收期間會暫停程序的執行,而併發算法,也是多線程回收,但期間不中止應用執行。因此,併發算法適用於交互性高的一些程序。通過觀察,併發算法會減小年輕代的大小,其實就是使用了一個大的年老代,這反過來跟並行算法相比吞吐量相對較低。eclipse

  還有一個問題是,垃圾回收動做什麼時候執行?

  • 當年輕代內存滿時,會引起一次普通GC,該GC僅回收年輕代。須要強調的時,年輕代盡是指Eden代滿,Survivor滿不會引起GC
  • 當年老代滿時會引起Full GC,Full GC將會同時回收年輕代、年老代
  • 當永久代滿時也會引起Full GC,會致使Class、Method元信息的卸載

  另外一個問題是,什麼時候會拋出OutOfMemoryException,並非內存被耗空的時候才拋出

  • JVM98%的時間都花費在內存回收
  • 每次回收的內存小於2%

  知足這兩個條件將觸發OutOfMemoryException,這將會留給系統一個微小的間隙以作一些Down以前的操做,好比手動打印Heap Dump。

2、內存泄漏及解決方法

 1.系統崩潰前的一些現象:

  • 每次垃圾回收的時間愈來愈長,由以前的10ms延長到50ms左右,FullGC的時間也有以前的0.5s延長到四、5s
  • FullGC的次數愈來愈多,最頻繁時隔不到1分鐘就進行一次FullGC
  • 年老代的內存愈來愈大而且每次FullGC後年老代沒有內存被釋放

 以後系統會沒法響應新的請求,逐漸到達OutOfMemoryError的臨界值。

 2.生成堆的dump文件

 經過JMX的MBean生成當前的Heap信息,大小爲一個3G(整個堆的大小)的hprof文件,若是沒有啓動JMX能夠經過Java的jmap命令來生成該文件。

 3.分析dump文件

 下面要考慮的是如何打開這個3G的堆信息文件,顯然通常的Window系統沒有這麼大的內存,必須藉助高配置的Linux。固然咱們能夠藉助X-Window把Linux上的圖形導入到Window。咱們考慮用下面幾種工具打開該文件:

  1. Visual VM
  2. IBM HeapAnalyzer
  3. JDK 自帶的Hprof工具

 使用這些工具時爲了確保加載速度,建議設置最大內存爲6G。使用後發現,這些工具都沒法直觀地觀察到內存泄漏,Visual VM雖能觀察到對象大小,但看不到調用堆棧;HeapAnalyzer雖然能看到調用堆棧,卻沒法正確打開一個3G的文件。所以,咱們又選用了Eclipse專門的靜態內存分析工具:Mat。

 4.分析內存泄漏

 經過Mat咱們能清楚地看到,哪些對象被懷疑爲內存泄漏,哪些對象佔的空間最大及對象的調用關係。針對本案,在ThreadLocal中有不少的JbpmContext實例,通過調查是JBPM的Context沒有關閉所致。

 另,經過Mat或JMX咱們還能夠分析線程狀態,能夠觀察到線程被阻塞在哪一個對象上,從而判斷系統的瓶頸。

 5.迴歸問題

   Q:爲何崩潰前垃圾回收的時間愈來愈長?

   A:根據內存模型和垃圾回收算法,垃圾回收分兩部分:內存標記、清除(複製),標記部分只要內存大小固定時間是不變的,變的是複製部分,由於每次垃圾回收都有一些回收不掉的內存,因此增長了複製量,致使時間延長。因此,垃圾回收的時間也能夠做爲判斷內存泄漏的依據

   Q:爲何Full GC的次數愈來愈多?

   A:所以內存的積累,逐漸耗盡了年老代的內存,致使新對象分配沒有更多的空間,從而致使頻繁的垃圾回收

   Q:爲何年老代佔用的內存愈來愈大?

   A:由於年輕代的內存沒法被回收,愈來愈多地被Copy到年老代

3、性能調優

 除了上述內存泄漏外,咱們還發現CPU長期不足3%,系統吞吐量不夠,針對8core×16G、64bit的Linux服務器來講,是嚴重的資源浪費。

 在CPU負載不足的同時,偶爾會有用戶反映請求的時間過長,咱們意識到必須對程序及JVM進行調優。從如下幾個方面進行:

  • 線程池:解決用戶響應時間長的問題
  • 鏈接池
  • JVM啓動參數:調整各代的內存比例和垃圾回收算法,提升吞吐量
  • 程序算法:改進程序邏輯算法提升性能

  1.Java線程池(java.util.concurrent.ThreadPoolExecutor)

    大多數JVM6上的應用採用的線程池都是JDK自帶的線程池,之因此把成熟的Java線程池進行羅嗦說明,是由於該線程池的行爲與咱們想象的有點出入。Java線程池有幾個重要的配置參數:

  • corePoolSize:核心線程數(最新線程數)
  • maximumPoolSize:最大線程數,超過這個數量的任務會被拒絕,用戶能夠經過RejectedExecutionHandler接口自定義處理方式
  • keepAliveTime:線程保持活動的時間
  • workQueue:工做隊列,存放執行的任務

    Java線程池須要傳入一個Queue參數(workQueue)用來存放執行的任務,而對Queue的不一樣選擇,線程池有徹底不一樣的行爲:

  • SynchronousQueue: 一個無容量的等待隊列,一個線程的insert操做必須等待另外一線程的remove操做,採用這個Queue線程池將會爲每一個任務分配一個新線程
  • LinkedBlockingQueue : 無界隊列,採用該Queue,線程池將忽略 maximumPoolSize參數,僅用corePoolSize的線程處理全部的任務,未處理的任務便在LinkedBlockingQueue中排隊
  • ArrayBlockingQueue: 有界隊列,在有界隊列和 maximumPoolSize的做用下,程序將很難被調優:更大的Queue和小的maximumPoolSize將致使CPU的低負載;小的Queue和大的池,Queue就沒起動應有的做用。

    其實咱們的要求很簡單,但願線程池能跟鏈接池同樣,能設置最小線程數、最大線程數,當最小數<任務<最大數時,應該分配新的線程處理;當任務>最大數時,應該等待有空閒線程再處理該任務。

    但線程池的設計思路是,任務應該放到Queue中,當Queue放不下時再考慮用新線程處理,若是Queue滿且沒法派生新線程,就拒絕該任務。設計致使「先放等執行」、「放不下再執行」、「拒毫不等待」。因此,根據不一樣的Queue參數,要提升吞吐量不能一味地增大maximumPoolSize。

    固然,要達到咱們的目標,必須對線程池進行必定的封裝,幸運的是ThreadPoolExecutor中留了足夠的自定義接口以幫助咱們達到目標。咱們封裝的方式是:

  • 以SynchronousQueue做爲參數,使maximumPoolSize發揮做用,以防止線程被無限制的分配,同時能夠經過提升maximumPoolSize來提升系統吞吐量
  • 自定義一個RejectedExecutionHandler,當線程數超過maximumPoolSize時進行處理,處理方式爲隔一段時間檢查線程池是否能夠執行新Task,若是能夠把拒絕的Task從新放入到線程池,檢查的時間依賴keepAliveTime的大小。

  2.鏈接池(org.apache.commons.dbcp.BasicDataSource)

    在使用org.apache.commons.dbcp.BasicDataSource的時候,由於以前採用了默認配置,因此當訪問量大時,經過JMX觀察到不少Tomcat線程都阻塞在BasicDataSource使用的Apache ObjectPool的鎖上,直接緣由當時是由於BasicDataSource鏈接池的最大鏈接數設置的過小,默認的BasicDataSource配置,僅使用8個最大鏈接。

    我還觀察到一個問題,當較長的時間不訪問系統,好比2天,DB上的Mysql會斷掉因此的鏈接,致使鏈接池中緩存的鏈接不能用。爲了解決這些問題,咱們充分研究了BasicDataSource,發現了一些優化的點:

  • Mysql默認支持100個連接,因此每一個鏈接池的配置要根據集羣中的機器數進行,若有2臺服務器,可每一個設置爲60
  • initialSize:參數是一直打開的鏈接數
  • minEvictableIdleTimeMillis:該參數設置每一個鏈接的空閒時間,超過這個時間鏈接將被關閉
  • timeBetweenEvictionRunsMillis:後臺線程的運行週期,用來檢測過時鏈接
  • maxActive:最大能分配的鏈接數
  • maxIdle:最大空閒數,當鏈接使用完畢後發現鏈接數大於maxIdle,鏈接將被直接關閉。只有initialSize < x < maxIdle的鏈接將被按期檢測是否超期。這個參數主要用來在峯值訪問時提升吞吐量。
  • initialSize是如何保持的?通過研究代碼發現,BasicDataSource會關閉全部超期的鏈接,而後再打開initialSize數量的鏈接,這個特性與minEvictableIdleTimeMillis、timeBetweenEvictionRunsMillis一塊兒保證了全部超期的initialSize鏈接都會被從新鏈接,從而避免了Mysql長時間無動做會斷掉鏈接的問題。

  3.JVM參數

    在JVM啓動參數中,能夠設置跟內存、垃圾回收相關的一些參數設置,默認狀況不作任何設置JVM會工做的很好,但對一些配置很好的Server和具體的應用必須仔細調優才能得到最佳性能。經過設置咱們但願達到一些目標:

  • GC的時間足夠的小
  • GC的次數足夠的少
  • 發生Full GC的週期足夠的長

  前兩個目前是相悖的,要想GC時間小必需要一個更小的堆,要保證GC次數足夠少,必須保證一個更大的堆,咱們只能取其平衡。

   (1)針對JVM堆的設置通常,能夠經過-Xms -Xmx限定其最小、最大值,爲了防止垃圾收集器在最小、最大之間收縮堆而產生額外的時間,咱們一般把最大、最小設置爲相同的值
   (2)年輕代和年老代將根據默認的比例(1:2)分配堆內存,能夠經過調整兩者之間的比率NewRadio來調整兩者之間的大小,也能夠針對回收代,好比年輕代,經過 -XX:newSize -XX:MaxNewSize來設置其絕對大小。一樣,爲了防止年輕代的堆收縮,咱們一般會把-XX:newSize -XX:MaxNewSize設置爲一樣大小

   (3)年輕代和年老代設置多大才算合理?這個我問題毫無疑問是沒有答案的,不然也就不會有調優。咱們觀察一下兩者大小變化有哪些影響

  • 更大的年輕代必然致使更小的年老代,大的年輕代會延長普通GC的週期,但會增長每次GC的時間;小的年老代會致使更頻繁的Full GC
  • 更小的年輕代必然致使更大年老代,小的年輕代會致使普通GC很頻繁,但每次的GC時間會更短;大的年老代會減小Full GC的頻率
  • 如何選擇應該依賴應用程序對象生命週期的分佈狀況:若是應用存在大量的臨時對象,應該選擇更大的年輕代;若是存在相對較多的持久對象,年老代應該適當增大。但不少應用都沒有這樣明顯的特性,在抉擇時應該根據如下兩點:(A)本着Full GC儘可能少的原則,讓年老代儘可能緩存經常使用對象,JVM的默認比例1:2也是這個道理 (B)經過觀察應用一段時間,看其餘在峯值時年老代會佔多少內存,在不影響Full GC的前提下,根據實際狀況加大年輕代,好比能夠把比例控制在1:1。但應該給年老代至少預留1/3的增加空間

  (4)在配置較好的機器上(好比多核、大內存),能夠爲年老代選擇並行收集算法: -XX:+UseParallelOldGC ,默認爲Serial收集

  (5)線程堆棧的設置:每一個線程默認會開啓1M的堆棧,用於存放棧幀、調用參數、局部變量等,對大多數應用而言這個默認值太了,通常256K就足用。理論上,在內存不變的狀況下,減小每一個線程的堆棧,能夠產生更多的線程,但這實際上還受限於操做系統。

  (4)能夠經過下面的參數打Heap Dump信息

  • -XX:HeapDumpPath
  • -XX:+PrintGCDetails
  • -XX:+PrintGCTimeStamps
  • -Xloggc:/usr/aaa/dump/heap_trace.txt

    經過下面參數能夠控制OutOfMemoryError時打印堆的信息

  • -XX:+HeapDumpOnOutOfMemoryError

 請看一下一個時間的Java參數配置:(服務器:Linux 64Bit,8Core×16G)

 JAVA_OPTS="$JAVA_OPTS -server -Xms3G -Xmx3G -Xss256k -XX:PermSize=128m -XX:MaxPermSize=128m -XX:+UseParallelOldGC -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/aaa/dump -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:/usr/aaa/dump/heap_trace.txt -XX:NewSize=1G -XX:MaxNewSize=1G"

通過觀察該配置很是穩定,每次普通GC的時間在10ms左右,Full GC基本不發生,或隔很長很長的時間才發生一次

經過分析dump文件能夠發現,每一個1小時都會發生一次Full GC,通過多方求證,只要在JVM中開啓了JMX服務,JMX將會1小時執行一次Full GC以清除引用,關於這點請參考附件文檔。

 4.程序算法調優:本次不做爲重點

相關文章
相關標籤/搜索