pytorch中如何自適應調整學習率?
pytorch中torch.optim.lr_scheduler提供了一些基於epochs數目的自適應學習率調整方法。html
torch.optim.lr_scheduler.ReduceLROnPlateau基於一些驗證集偏差測量實現動態學習率縮減。
python
1.torch.optim.lr_scheduler.
LambdaLR
(optimizer,lr_lambda,last_epoch=-1)
根據epoch,將每一個參數組(parameter group)的學習速率設置爲初始lr乘以一個給定的函數(epoch爲自變量)。當last_epoch = -1時,將初始lr設置爲lr。數組
lr_lambda (function or list) – A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.app
函數或列表,一個給定epoch計算乘積係數的函數,或這樣的函數的一個list,list中的每個函數對應於optimizer.param_groups中的一個參數組。函數
last_epoch (int) – The index of last epoch. Default: -1.學習
Example:url
>>> # Assuming optimizer has two groups. >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95 ** epoch >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2]) >>> for epoch in range(100): >>> scheduler.step() >>> train(...) >>> validate(...)
state_dict
():以dict的形式返回 scheduler的狀態。spa
It contains an entry for every variable in self.__dict__ which is not the optimizer. .net
The learning rate lambda functions will only be saved if they are callable objects and not if they are functions or lambdas.scala
load_state_dict
(state_dict):加載scheduler的狀態。
參數:state_dict(dict) - scheduler的狀態。 應該是對state_dict()的調用返回的對象。
2.torch.optim.lr_scheduler.
StepLR
(optimizer, step_size, gamma=0.1, last_epoch=-1)
將每一個參數組的學習速率設置爲每隔step_size epochs,衰減gamma倍。 當last_epoch = -1時,將初始lr設置爲lr。
step_size (int) – Period of learning rate decay. 衰減週期
gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1. 衰減係數
last_epoch (int) – The index of last epoch. Default: -1.
Example
>>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 60 >>> # lr = 0.0005 if 60 <= epoch < 90 >>> # ... >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1) >>> for epoch in range(100): >>> scheduler.step() >>> train(...) >>> validate(...)
3.torch.optim.lr_scheduler.
MultiStepLR
(optimizer, milestones, gamma=0.1, last_epoch=-1)
一旦epochs數達到其中一個里程碑,將每一個參數組的學習速率衰減gamma倍。 當last_epoch = -1時,將初始lr設置爲lr。
- milestones (list) – List of epoch indices. Must be increasing. 衰減點,必須遞增。
- gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1. 衰減係數。
- last_epoch (int) – The index of last epoch. Default: -1.
Example
>>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 80 >>> # lr = 0.0005 if epoch >= 80 >>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1) >>> for epoch in range(100): >>> scheduler.step() >>> train(...) >>> validate(...)
4. torch.optim.lr_scheduler.
ExponentialLR
(optimizer, gamma, last_epoch=-1)
將每一個參數組的學習率設置爲每一個epoch衰減gamma倍。 當last_epoch = -1時,將初始lr設置爲lr。
5. torch.optim.lr_scheduler.
CosineAnnealingLR
(optimizer, T_max, eta_min=0, last_epoch=-1)
採用餘弦退火機制設置每一個參數組的學習率,
餘弦退火與熱重啓
6. torch.optim.lr_scheduler.
ReduceLROnPlateau
(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
當指標中止改進時下降學習率。一旦學習停滯,模型一般會將學習率下降2-10倍。該調度程序讀取度量指標,若是對「
patience」
數量的epochs沒有看到改進,則學習速率下降。
- mode (str) – One of min, max. In min mode, lr will be reduced when the quantity monitored has stopped decreasing; in max mode it will be reduced when the quantity monitored has stopped increasing. Default: ‘min’. 指定指標是增加仍是減少,默認減少min。
- factor (float) – Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1. 衰減係數
- patience (int) – Number of epochs with no improvement after which learning rate will be reduced. For example, if patience = 2, then we will ignore the first 2 epochs with no improvement, and will only decrease the LR after the 3rd epoch if the loss still hasn’t improved then. Default: 10. 耐心值
- verbose (bool) – If
True
, prints a message to stdout for each update. Default:False
. - threshold (float) – Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4.
- threshold_mode (str) – One of rel, abs. In rel mode, dynamic_threshold = best * ( 1 + threshold ) in ‘max’ mode or best * ( 1 - threshold ) in min mode. In abs mode, dynamic_threshold = best + threshold in max mode or best - threshold in min mode. Default: ‘rel’.
- cooldown (int) – Number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. 機制冷卻時間
- min_lr (float or list) – A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. Default: 0. 最小學習率
- eps (float) – Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8. 最小衰減量,若是衰減先後lr小於eps,則忽略衰減。