Go是一門簡單有趣的語言,但與其餘語言相似,它會有一些技巧。。。這些技巧的絕大部分並非Go的缺陷形成的。若是你之前使用的是其餘語言,那麼這其中的有些錯誤就是很天然的陷阱。其它的是由錯誤的假設和缺乏細節形成的。golang
若是你花時間學習這門語言,閱讀官方說明、wiki、郵件列表討論、大量的優秀博文和Rob Pike的展現,以及源代碼,這些技巧中的絕大多數都是顯而易見的。儘管不是每一個人都是以這種方式開始學習的,但也不要緊。若是你是Go語言新人,那麼這裏的信息將會節約你大量的調試代碼的時間。express
在大多數其餘使用大括號的語言中,你須要選擇放置它們的位置。Go的方式不一樣。你能夠爲此感謝下自動分號的注入(沒有預讀)。是的,Go中也是有分號的:-)
失敗的例子:json
package main import "fmt" func main() { //error, can't have the opening brace on a separate line fmt.Println("hello there!") }
編譯錯誤:api
/tmp/sandbox826898458/main.go:6: syntax error: unexpected semicolon or newline before {數組
有效的例子:緩存
package main import "fmt" func main() { fmt.Println("works!") }
若是你有未使用的變量,代碼將編譯失敗。固然也有例外。在函數內必定要使用聲明的變量,但未使用的全局變量是沒問題的。
若是你給未使用的變量分配了一個新的值,代碼仍是會編譯失敗。你須要在某個地方使用這個變量,才能讓編譯器愉快的編譯。安全
Fails:服務器
package main var gvar int //not an error func main() { var one int //error, unused variable two := 2 //error, unused variable var three int //error, even though it's assigned 3 on the next line three = 3 }
Compile Errors:網絡
/tmp/sandbox473116179/main.go:6: one declared and not used /tmp/sandbox473116179/main.go:7: two declared and not used /tmp/sandbox473116179/main.go:8: three declared and not used
Works:數據結構
package main import "fmt" func main() { var one int _ = one two := 2 fmt.Println(two) var three int three = 3 one = three var four int four = four }
另外一個選擇是註釋掉或者移除未使用的變量
若是你引入一個包,而沒有使用其中的任何函數、接口、結構體或者變量的話,代碼將會編譯失敗。
你可使用goimports來增長引入或者移除未使用的引用:
$ go get golang.org/x/tools/cmd/goimports
若是你真的須要引入的包,你能夠添加一個下劃線標記符,_,來做爲這個包的名字,從而避免編譯失敗。下滑線標記符用於引入,但不使用。
Fails:
package main import ( "fmt" "log" "time" ) func main() { }
Compile Errors:
/tmp/sandbox627475386/main.go:4: imported and not used: "fmt"
/tmp/sandbox627475386/main.go:5: imported and not used: "log"
/tmp/sandbox627475386/main.go:6: imported and not used: "time"
Works:
package main import ( _ "fmt" "log" "time" ) var _ = log.Println func main() { _ = time.Now }
另外一個選擇是移除或者註釋掉未使用的imports
Fails:
package main myvar := 1 //error func main() { }
Compile Error:
/tmp/sandbox265716165/main.go:3: non-declaration statement outside function body
Works:
package main var myvar = 1 func main() { }
你不能在一個單獨的聲明中重複聲明一個變量,但在多變量聲明中這是容許的,其中至少要有一個新的聲明變量。
重複變量須要在相同的代碼塊內,不然你將獲得一個隱藏變量。
Fails:
package main func main() { one := 0 one := 1 //error }
Compile Error:
/tmp/sandbox706333626/main.go:5: no new variables on left side of :=
Works:
package main func main() { one := 0 one, two := 1,2 one,two = two,one }
短式變量聲明的語法如此的方便(尤爲對於那些使用過動態語言的開發者而言),很容易讓人把它當成一個正常的分配操做。若是你在一個新的代碼塊中犯了這個錯誤,將不會出現編譯錯誤,但你的應用將不會作你所指望的事情。
package main import "fmt" func main() { x := 1 fmt.Println(x) //prints 1 { fmt.Println(x) //prints 1 x := 2 fmt.Println(x) //prints 2 } fmt.Println(x) //prints 1 (bad if you need 2) }
即便對於經驗豐富的Go開發者而言,這也是一個很是常見的陷阱。這個坑很容易挖,但又很難發現。
你可使用 vet命令來發現一些這樣的問題。 默認狀況下, vet不會執行這樣的檢查,你須要設置-shadow參數:
go tool vet -shadow your_file.go。
nil標誌符用於表示interface、函數、maps、slices和channels的「零值」。若是你不指定變量的類型,編譯器將沒法編譯你的代碼,由於它猜不出具體的類型。
Fails:
package main func main() { var x = nil //error _ = x }
Compile Error:
/tmp/sandbox188239583/main.go:4: use of untyped nil
Works:
package main func main() { var x interface{} = nil _ = x }
在一個nil的slice中添加元素是沒問題的,但對一個map作一樣的事將會生成一個運行時的panic。
Works:
package main func main() { var s []int s = append(s,1) }
Fails:
package main func main() { var m map[string]int m["one"] = 1 //error }
你能夠在map建立時指定它的容量,但你沒法在map上使用cap()函數。
Fails:
package main func main() { m := make(map[string]int,99) cap(m) //error }
Compile Error:
/tmp/sandbox326543983/main.go:5: invalid argument m (type map[string]int) for cap
這對於常用nil分配字符串變量的開發者而言是個須要注意的地方。
Fails:
package main func main() { var x string = nil //error if x == nil { //error x = "default" } }
Compile Errors:
/tmp/sandbox630560459/main.go:4: cannot use nil as type string in assignment /tmp/sandbox630560459/main.go:6: invalid operation: x == nil (mismatched types string and nil)
Works:
package main func main() { var x string //defaults to "" (zero value) if x == "" { x = "default" } }
若是你是一個C或則C++開發者,那麼數組對你而言就是指針。當你向函數中傳遞數組時,函數會參照相同的內存區域,這樣它們就能夠修改原始的數據。Go中的數組是數值,所以當你向函數中傳遞數組時,函數會獲得原始數組數據的一份複製。若是你打算更新數組的數據,這將會是個問題。
package main import "fmt" func main() { x := [3]int{1,2,3} func(arr [3]int) { arr[0] = 7 fmt.Println(arr) //prints [7 2 3] }(x) fmt.Println(x) //prints [1 2 3] (not ok if you need [7 2 3]) }
若是你須要更新原始數組的數據,你可使用數組指針類型。
package main import "fmt" func main() { x := [3]int{1,2,3} func(arr *[3]int) { (*arr)[0] = 7 fmt.Println(arr) //prints &[7 2 3] }(&x) fmt.Println(x) //prints [7 2 3] }
另外一個選擇是使用slice。即便你的函數獲得了slice變量的一份拷貝,它依舊會參照原始的數據。
package main import "fmt" func main() { x := []int{1,2,3} func(arr []int) { arr[0] = 7 fmt.Println(arr) //prints [7 2 3] }(x) fmt.Println(x) //prints [7 2 3] }
若是你在其餘的語言中使用「for-in」或者「foreach」語句時會發生這種狀況。Go中的「range」語法不太同樣。它會獲得兩個值:第一個值是元素的索引,而另外一個值是元素的數據。
Bad:
package main import "fmt" func main() { x := []string{"a","b","c"} for v := range x { fmt.Println(v) //prints 0, 1, 2 } }
Good:
package main import "fmt" func main() { x := []string{"a","b","c"} for _, v := range x { fmt.Println(v) //prints a, b, c } }
看起來Go好像支持多維的Array和Slice,但不是這樣的。儘管能夠建立數組的數組或者切片的切片。對於依賴於動態多維數組的數值計算應用而言,Go在性能和複雜度上還相距甚遠。
你可使用純一維數組、「獨立」切片的切片,「共享數據」切片的切片來構建動態的多維數組。
若是你使用純一維的數組,你須要處理索引、邊界檢查、當數組須要變大時的內存從新分配。
使用「獨立」slice來建立一個動態的多維數組須要兩步。首先,你須要建立一個外部的slice。而後,你須要分配每一個內部的slice。內部的slice相互之間獨立。你能夠增長減小它們,而不會影響其餘內部的slice。
package main func main() { x := 2 y := 4 table := make([][]int,x) for i:= range table { table[i] = make([]int,y) } }
使用「共享數據」slice的slice來建立一個動態的多維數組須要三步。首先,你須要建立一個用於存放原始數據的數據「容器」。而後,你再建立外部的slice。最後,經過從新切片原始數據slice來初始化各個內部的slice。
package main import "fmt" func main() { h, w := 2, 4 raw := make([]int,h*w) for i := range raw { raw[i] = i } fmt.Println(raw,&raw[4]) //prints: [0 1 2 3 4 5 6 7] <ptr_addr_x> table := make([][]int,h) for i:= range table { table[i] = raw[i*w:i*w + w] } fmt.Println(table,&table[1][0]) //prints: [[0 1 2 3] [4 5 6 7]] <ptr_addr_x> }
關於多維array和slice已經有了專門申請,但如今看起來這是個低優先級的特性。
這對於那些但願獲得「nil」標示符的開發者而言是個技巧(和其餘語言中作的同樣)。若是對應的數據類型的「零值」是「nil」,那返回的值將會是「nil」,但對於其餘的數據類型是不同的。檢測對應的「零值」能夠用於肯定map中的記錄是否存在,但這並不老是可信(好比,若是在二值的map中「零值」是false,這時你要怎麼作)。檢測給定map中的記錄是否存在的最可信的方法是,經過map的訪問操做,檢查第二個返回的值。
Bad:
package main import "fmt" func main() { x := map[string]string{"one":"a","two":"","three":"c"} if v := x["two"]; v == "" { //incorrect fmt.Println("no entry") } }
Good:
package main import "fmt" func main() { x := map[string]string{"one":"a","two":"","three":"c"} if _,ok := x["two"]; !ok { fmt.Println("no entry") } }
嘗試使用索引操做來更新字符串變量中的單個字符將會失敗。string是隻讀的byte slice(和一些額外的屬性)。若是你確實須要更新一個字符串,那麼使用byte slice,並在須要時把它轉換爲string類型。
Fails:
package main import "fmt" func main() { x := "text" x[0] = 'T' fmt.Println(x) }
Compile Error:
/tmp/sandbox305565531/main.go:7: cannot assign to x[0]
Works:
package main import "fmt" func main() { x := "text" xbytes := []byte(x) xbytes[0] = 'T' fmt.Println(string(xbytes)) //prints Text }
須要注意的是:這並非在文字string中更新字符的正確方式,由於給定的字符可能會存儲在多個byte中。若是你確實須要更新一個文字string,先把它轉換爲一個rune slice。即便使用rune slice,單個字符也可能會佔據多個rune,好比當你的字符有特定的重音符號時就是這種狀況。這種複雜又模糊的「字符」本質是Go字符串使用byte序列表示的緣由。
當你把一個字符串轉換爲一個byte slice(或者反之)時,你就獲得了一個原始數據的完整拷貝。這和其餘語言中cast操做不一樣,也和新的slice變量指向原始byte slice使用的相同數組時的從新slice操做不一樣。
Go在[]byte到string和string到[]byte的轉換中確實使用了一些優化來避免額外的分配(在todo列表中有更多的優化)。
第一個優化避免了當[]byte keys用於在map[string]集合中查詢時的額外分配:m[string(key)]。
第二個優化避免了字符串轉換爲[]byte後在for range語句中的額外分配:for i,v := range []byte(str) {...}
。
String和索引操做
字符串上的索引操做返回一個byte值,而不是一個字符(和其餘語言中的作法同樣)。
package main import "fmt" func main() { x := "text" fmt.Println(x[0]) //print 116 fmt.Printf("%T",x[0]) //prints uint8 }
若是你須要訪問特定的字符串「字符」(unicode編碼的points/runes),使用for range。官方的「unicode/utf8」包和實驗中的utf8string包也能夠用。utf8string包中包含了一個很方便的At()方法。把字符串轉換爲rune的切片也是一個選項。
字符串的值不須要是UTF8的文本。它們能夠包含任意的字節。只有在string literal使用時,字符串纔會是UTF8。即便以後它們可使用轉義序列來包含其餘的數據。
爲了知道字符串是不是UTF8,你可使用「unicode/utf8」包中的ValidString()函數。
package main import ( "fmt" "unicode/utf8" ) func main() { data1 := "ABC" fmt.Println(utf8.ValidString(data1)) //prints: true data2 := "A\xfeC" fmt.Println(utf8.ValidString(data2)) //prints: false }
讓咱們假設你是Python開發者,你有下面這段代碼:
data = u'♥' print(len(data)) #prints: 1
當把它轉換爲Go代碼時,你可能會大吃一驚。
package main import "fmt" func main() { data := "♥" fmt.Println(len(data)) //prints: 3 }
內建的len()函數返回byte的數量,而不是像Python中計算好的unicode字符串中字符的數量。
要在Go中獲得相同的結果,可使用「unicode/utf8」包中的RuneCountInString()函數。
package main import ( "fmt" "unicode/utf8" ) func main() { data := "♥" fmt.Println(utf8.RuneCountInString(data)) //prints: 1 }
理論上說RuneCountInString()函數並不返回字符的數量,由於單個字符可能佔用多個rune。
package main import ( "fmt" "unicode/utf8" ) func main() { data := "é" fmt.Println(len(data)) //prints: 3 fmt.Println(utf8.RuneCountInString(data)) //prints: 2 }
Fails:
package main func main() { x := []int{ 1, 2 //error } _ = x }
Compile Errors:
/tmp/sandbox367520156/main.go:6: syntax error: need trailing comma before newline in composite literal /tmp/sandbox367520156/main.go:8: non-declaration statement outside function body /tmp/sandbox367520156/main.go:9: syntax error: unexpected }
Works:
package main func main() { x := []int{ 1, 2, } x = x y := []int{3,4,} //no error y = y }
當你把聲明摺疊到單行時,若是你沒加末尾的逗號,你將不會獲得編譯錯誤。
Logging庫通常提供不一樣的log等級。與這些logging庫不一樣,Go中log包在你調用它的Fatal()和Panic()函數時,能夠作的不只僅是log。當你的應用調用這些函數時,Go也將會終止應用
package main import "log" func main() { log.Fatalln("Fatal Level: log entry") //app exits here log.Println("Normal Level: log entry") }
即便Go自己有不少特性來支持併發,併發安全的數據集合並非其中之一。確保數據集合以原子的方式更新是你的職責。Goroutines和channels是實現這些原子操做的推薦方式,但你也可使用「sync」包,若是它對你的應用有意義的話。
索引值(「range」操做返回的第一個值)是返回的第二個值的當前「字符」(unicode編碼的point/rune)的第一個byte的索引。它不是當前「字符」的索引,這與其餘語言不一樣。注意真實的字符可能會由多個rune表示。若是你須要處理字符,確保你使用了「norm」包。
string變量的for range語句將會嘗試把數據翻譯爲UTF8文本。對於它沒法理解的任何byte序列,它將返回0xfffd runes(即unicode替換字符),而不是真實的數據。若是你任意(非UTF8文本)的數據保存在string變量中,確保把它們轉換爲byte slice,以獲得全部保存的數據。
package main import "fmt" func main() { data := "A\xfe\x02\xff\x04" for _,v := range data { fmt.Printf("%#x ",v) } //prints: 0x41 0xfffd 0x2 0xfffd 0x4 (not ok) fmt.Println() for _,v := range []byte(data) { fmt.Printf("%#x ",v) } //prints: 0x41 0xfe 0x2 0xff 0x4 (good) }
若是你但願以某個順序(好比,按key值排序)的方式獲得元素,就須要這個技巧。每次的map迭代將會生成不一樣的結果。Go的runtime有心嘗試隨機化迭代順序,但並不總會成功,這樣你可能獲得一些相同的map迭代結果。因此若是連續看到5個相同的迭代結果,不要驚訝。
package main import "fmt" func main() { m := map[string]int{"one":1,"two":2,"three":3,"four":4} for k,v := range m { fmt.Println(k,v) } }
並且若是你使用Go Playground,你將總會獲得一樣的結果,由於除非你修改代碼,不然它不會從新編譯代碼。
在「switch」聲明語句中的「case」語句塊在默認狀況下會break。這和其餘語言中的進入下一個「next」代碼塊的默認行爲不一樣。
package main import "fmt" func main() { isSpace := func(ch byte) bool { switch(ch) { case ' ': //error case '\t': return true } return false } fmt.Println(isSpace('\t')) //prints true (ok) fmt.Println(isSpace(' ')) //prints false (not ok) }
你能夠經過在每一個「case」塊的結尾使用「fallthrough」,來強制「case」代碼塊進入。你也能夠重寫switch語句,來使用「case」塊中的表達式列表。
package main import "fmt" func main() { isSpace := func(ch byte) bool { switch(ch) { case ' ', '\t': return true } return false } fmt.Println(isSpace('\t')) //prints true (ok) fmt.Println(isSpace(' ')) //prints true (ok) }
許多語言都有自增和自減操做。不像其餘語言,Go不支持前置版本的操做。你也沒法在表達式中使用這兩個操做符。
Fails:
package main import "fmt" func main() { data := []int{1,2,3} i := 0 ++i //error fmt.Println(data[i++]) //error }
Compile Errors:
/tmp/sandbox101231828/main.go:8: syntax error: unexpected ++ /tmp/sandbox101231828/main.go:9: syntax error: unexpected ++, expecting :
Works:
package main import "fmt" func main() { data := []int{1,2,3} i := 0 i++ fmt.Println(data[i]) }
許多語言使用 ~做爲一元的NOT操做符(即按位補足),但Go爲了這個重用了XOR操做符(^)。
Fails:
package main import "fmt" func main() { fmt.Println(~2) //error }
Compile Error:
/tmp/sandbox965529189/main.go:6: the bitwise complement operator is ^
Works:
package main import "fmt" func main() { var d uint8 = 2 fmt.Printf("%08b\n",^d) }
Go依舊使用^做爲XOR的操做符,這可能會讓一些人迷惑。
若是你願意,你可使用一個二元的XOR操做(如, 0x02 XOR 0xff)來表示一個一元的NOT操做(如,NOT 0x02)。這能夠解釋爲何^被重用來表示一元的NOT操做。
Go也有特殊的‘AND NOT’按位操做(&^),這也讓NOT操做更加的讓人迷惑。這看起來須要特殊的特性/hack來支持 A AND (NOT B),而無需括號。
package main import "fmt" func main() { var a uint8 = 0x82 var b uint8 = 0x02 fmt.Printf("%08b [A]\n",a) fmt.Printf("%08b [B]\n",b) fmt.Printf("%08b (NOT B)\n",^b) fmt.Printf("%08b ^ %08b = %08b [B XOR 0xff]\n",b,0xff,b ^ 0xff) fmt.Printf("%08b ^ %08b = %08b [A XOR B]\n",a,b,a ^ b) fmt.Printf("%08b & %08b = %08b [A AND B]\n",a,b,a & b) fmt.Printf("%08b &^%08b = %08b [A 'AND NOT' B]\n",a,b,a &^ b) fmt.Printf("%08b&(^%08b)= %08b [A AND (NOT B)]\n",a,b,a & (^b)) }
除了」bit clear「操做(&^),Go也一個與許多其餘語言共享的標準操做符的集合。儘管操做優先級並不老是同樣。
package main import "fmt" func main() { fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n",0x2 & 0x2 + 0x4) //prints: 0x2 & 0x2 + 0x4 -> 0x6 //Go: (0x2 & 0x2) + 0x4 //C++: 0x2 & (0x2 + 0x4) -> 0x2 fmt.Printf("0x2 + 0x2 << 0x1 -> %#x\n",0x2 + 0x2 << 0x1) //prints: 0x2 + 0x2 << 0x1 -> 0x6 //Go: 0x2 + (0x2 << 0x1) //C++: (0x2 + 0x2) << 0x1 -> 0x8 fmt.Printf("0xf | 0x2 ^ 0x2 -> %#x\n",0xf | 0x2 ^ 0x2) //prints: 0xf | 0x2 ^ 0x2 -> 0xd //Go: (0xf | 0x2) ^ 0x2 //C++: 0xf | (0x2 ^ 0x2) -> 0xf }
以小寫字母開頭的結構體將不會被(json、xml、gob等)編碼,所以當你編碼這些未導出的結構體時,你將會獲得零值。
Fails:
package main import ( "fmt" "encoding/json" ) type MyData struct { One int two string } func main() { in := MyData{1,"two"} fmt.Printf("%#v\n",in) //prints main.MyData{One:1, two:"two"} encoded,_ := json.Marshal(in) fmt.Println(string(encoded)) //prints {"One":1} var out MyData json.Unmarshal(encoded,&out) fmt.Printf("%#v\n",out) //prints main.MyData{One:1, two:""} }
應用將不會等待全部的goroutines完成。這對於初學者而言是個很常見的錯誤。每一個人都是以某個程度開始,所以若是犯了初學者的錯誤也沒神馬好丟臉的 :-)
package main import ( "fmt" "time" ) func main() { workerCount := 2 for i := 0; i < workerCount; i++ { go doit(i) } time.Sleep(1 * time.Second) fmt.Println("all done!") } func doit(workerId int) { fmt.Printf("[%v] is running\n",workerId) time.Sleep(3 * time.Second) fmt.Printf("[%v] is done\n",workerId) }
你將會看到:
1 2 3 [0] is running [1] is running all done!
一個最多見的解決方法是使用「WaitGroup」變量。它將會讓主goroutine等待全部的worker goroutine完成。若是你的應用有長時運行的消息處理循環的worker,你也將須要一個方法向這些goroutine發送信號,讓它們退出。你能夠給各個worker發送一個「kill」消息。另外一個選項是關閉一個全部worker都接收的channel。這是一次向全部goroutine發送信號的簡單方式。
package main import ( "fmt" "sync" ) func main() { var wg sync.WaitGroup done := make(chan struct{}) workerCount := 2 for i := 0; i < workerCount; i++ { wg.Add(1) go doit(i,done,wg) } close(done) wg.Wait() fmt.Println("all done!") } func doit(workerId int,done <-chan struct{},wg sync.WaitGroup) { fmt.Printf("[%v] is running\n",workerId) defer wg.Done() <- done fmt.Printf("[%v] is done\n",workerId) }
若是你運行這個應用,你將會看到:
1 2 3 4 [0] is running [0] is done [1] is running [1] is done
看起來全部的worker在主goroutine退出前都完成了。棒!然而,你也將會看到這個:
1 fatal error: all goroutines are asleep - deadlock!
這可不太好 :-) 發送了神馬?爲何會出現死鎖?worker退出了,它們也執行了wg.Done()。應用應該沒問題啊。
死鎖發生是由於各個worker都獲得了原始的「WaitGroup」變量的一個拷貝。當worker執行wg.Done()時,並無在主goroutine上的「WaitGroup」變量上生效。
package main import ( "fmt" "sync" ) func main() { var wg sync.WaitGroup done := make(chan struct{}) wq := make(chan interface{}) workerCount := 2 for i := 0; i < workerCount; i++ { wg.Add(1) go doit(i,wq,done,&wg) } for i := 0; i < workerCount; i++ { wq <- i } close(done) wg.Wait() fmt.Println("all done!") } func doit(workerId int, wq <-chan interface{},done <-chan struct{},wg *sync.WaitGroup) { fmt.Printf("[%v] is running\n",workerId) defer wg.Done() for { select { case m := <- wq: fmt.Printf("[%v] m => %v\n",workerId,m) case <- done: fmt.Printf("[%v] is done\n",workerId) return } } }
如今它會如預期般工做
發送者將不會被阻塞,除非消息正在被接收者處理。根據你運行代碼的機器的不一樣,接收者的goroutine可能會或者不會有足夠的時間,在發送者繼續執行前處理消息。
package main import "fmt" func main() { ch := make(chan string) go func() { for m := range ch { fmt.Println("processed:",m) } }() ch <- "cmd.1" ch <- "cmd.2" //won't be processed }
從一個關閉的channel接收是安全的。在接收狀態下的ok的返回值將被設置爲false,這意味着沒有數據被接收。若是你從一個有緩存的channel接收,你將會首先獲得緩存的數據,一旦它爲空,返回的ok值將變爲false。
向關閉的channel中發送數據會引發panic。這個行爲有文檔說明,但對於新的Go開發者的直覺不一樣,他們可能但願發送行爲與接收行爲很像。
package main import ( "fmt" "time" ) func main() { ch := make(chan int) for i := 0; i < 3; i++ { go func(idx int) { ch <- (idx + 1) * 2 }(i) } //get the first result fmt.Println(<-ch) close(ch) //not ok (you still have other senders) //do other work time.Sleep(2 * time.Second) }
根據不一樣的應用,修復方法也將不一樣。多是很小的代碼修改,也可能須要修改應用的設計。不管是哪一種方法,你都須要確保你的應用不會向關閉的channel中發送數據。
上面那個有bug的例子能夠經過使用一個特殊的廢棄的channel來向剩餘的worker發送再也不須要它們的結果的信號來修復。
package main import ( "fmt" "time" ) func main() { ch := make(chan int) done := make(chan struct{}) for i := 0; i < 3; i++ { go func(idx int) { select { case ch <- (idx + 1) * 2: fmt.Println(idx,"sent result") case <- done: fmt.Println(idx,"exiting") } }(i) } //get first result fmt.Println("result:",<-ch) close(done) //do other work time.Sleep(3 * time.Second) }
在一個nil的channel上發送和接收操做會被永久阻塞。這個行爲有詳細的文檔解釋,但它對於新的Go開發者而言是個驚喜。
package main import ( "fmt" "time" ) func main() { var ch chan int for i := 0; i < 3; i++ { go func(idx int) { ch <- (idx + 1) * 2 }(i) } //get first result fmt.Println("result:",<-ch) //do other work time.Sleep(2 * time.Second) }
若是運行代碼你將會看到一個runtime錯誤:
1 fatal error: all goroutines are asleep - deadlock!
這個行爲能夠在select聲明中用於動態開啓和關閉case代碼塊的方法。
package main import "fmt" import "time" func main() { inch := make(chan int) outch := make(chan int) go func() { var in <- chan int = inch var out chan <- int var val int for { select { case out <- val: out = nil in = inch case val = <- in: out = outch in = nil } } }() go func() { for r := range outch { fmt.Println("result:",r) } }() time.Sleep(0) inch <- 1 inch <- 2 time.Sleep(3 * time.Second) }
方法的接收者就像常規的函數參數。若是聲明爲值,那麼你的函數/方法獲得的是接收者參數的拷貝。這意味着對接收者所作的修改將不會影響原有的值,除非接收者是一個map或者slice變量,而你更新了集合中的元素,或者你更新的域的接收者是指針。
package main import "fmt" type data struct { num int key *string items map[string]bool } func (this *data) pmethod() { this.num = 7 } func (this data) vmethod() { this.num = 8 *this.key = "v.key" this.items["vmethod"] = true } func main() { key := "key.1" d := data{1,&key,make(map[string]bool)} fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items) //prints num=1 key=key.1 items=map[] d.pmethod() fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items) //prints num=7 key=key.1 items=map[] d.vmethod() fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items) //prints num=7 key=v.key items=map[vmethod:true] }
當你使用標準http庫發起請求時,你獲得一個http的響應變量。若是你不讀取響應主體,你依舊須要關閉它。注意對於空的響應你也必定要這麼作。對於新的Go開發者而言,這個很容易就會忘掉。
一些新的Go開發者確實嘗試關閉響應主體,但他們在錯誤的地方作。
package main import ( "fmt" "net/http" "io/ioutil" ) func main() { resp, err := http.Get("https://api.ipify.org?format=json") defer resp.Body.Close()//not ok if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) }
這段代碼對於成功的請求沒問題,但若是http的請求失敗,resp變量可能會是nil,這將致使一個runtime panic。
最多見的關閉響應主體的方法是在http響應的錯誤檢查後調用defer。
package main import ( "fmt" "net/http" "io/ioutil" ) func main() { resp, err := http.Get("https://api.ipify.org?format=json") if err != nil { fmt.Println(err) return } defer resp.Body.Close()//ok, most of the time :-) body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) }
大多數狀況下,當你的http響應失敗時,resp變量將爲nil,而err變量將是non-nil。然而,當你獲得一個重定向的錯誤時,兩個變量都將是non-nil。這意味着你最後依然會內存泄露。
經過在http響應錯誤處理中添加一個關閉non-nil響應主體的的調用來修復這個問題。另外一個方法是使用一個defer調用來關閉全部失敗和成功的請求的響應主體。
package main import ( "fmt" "net/http" "io/ioutil" ) func main() { resp, err := http.Get("https://api.ipify.org?format=json") if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) }
resp.Body.Close()的原始實現也會讀取並丟棄剩餘的響應主體數據。這確保了http的連接在keepalive http鏈接行爲開啓的狀況下,能夠被另外一個請求複用。最新的http客戶端的行爲是不一樣的。如今讀取並丟棄剩餘的響應數據是你的職責。若是你不這麼作,http的鏈接可能會關閉,而沒法被重用。這個小技巧應該會寫在Go 1.5的文檔中。
若是http鏈接的重用對你的應用很重要,你可能須要在響應處理邏輯的後面添加像下面的代碼:
_, err = io.Copy(ioutil.Discard, resp.Body)
若是你不當即讀取整個響應將是必要的,這可能在你處理json API響應時會發生:
json.NewDecoder(resp.Body).Decode(&data)
一些HTTP服務器保持會保持一段時間的網絡鏈接(根據HTTP 1.1的說明和服務器端的「keep-alive」配置)。默認狀況下,標準http庫只在目標HTTP服務器要求關閉時纔會關閉網絡鏈接。這意味着你的應用在某些條件下消耗完sockets/file的描述符。
你能夠經過設置請求變量中的Close域的值爲true,來讓http庫在請求完成時關閉鏈接。
另外一個選項是添加一個Connection的請求頭,並設置爲close。目標HTTP服務器應該也會響應一個Connection: close的頭。當http庫看到這個響應頭時,它也將會關閉鏈接。
package main import ( "fmt" "net/http" "io/ioutil" ) func main() { req, err := http.NewRequest("GET","http://golang.org",nil) if err != nil { fmt.Println(err) return } req.Close = true //or do this: //req.Header.Add("Connection", "close") resp, err := http.DefaultClient.Do(req) if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(len(string(body))) }
你也能夠取消http的全局鏈接複用。你將須要爲此建立一個自定義的http傳輸配置。
package main import ( "fmt" "net/http" "io/ioutil" ) func main() { tr := &http.Transport{DisableKeepAlives: true} client := &http.Client{Transport: tr} resp, err := client.Get("http://golang.org") if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } fmt.Println(resp.StatusCode) body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(len(string(body))) }
若是你向同一個HTTP服務器發送大量的請求,那麼把保持網絡鏈接的打開是沒問題的。然而,若是你的應用在短期內向大量不一樣的HTTP服務器發送一兩個請求,那麼在引用收到響應後馬上關閉網絡鏈接是一個好主意。增長打開文件的限制數可能也是個好主意。固然,正確的選擇源自於應用。
若是結構體中的各個元素均可以用你可使用等號來比較的話,那就可使用相號, ==,來比較結構體變量。
package main import "fmt" type data struct { num int fp float32 complex complex64 str string char rune yes bool events <-chan string handler interface{} ref *byte raw [10]byte } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:",v1 == v2) //prints: v1 == v2: true }
若是結構體中的元素沒法比較,那使用等號將致使編譯錯誤。注意數組僅在它們的數據元素可比較的狀況下才能夠比較。
package main import "fmt" type data struct { num int //ok checks [10]func() bool //not comparable doit func() bool //not comparable m map[string] string //not comparable bytes []byte //not comparable } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:",v1 == v2) }
Go確實提供了一些助手函數,用於比較那些沒法使用等號比較的變量。
最經常使用的方法是使用reflect包中的DeepEqual()函數。
package main import ( "fmt" "reflect" ) type data struct { num int //ok checks [10]func() bool //not comparable doit func() bool //not comparable m map[string] string //not comparable bytes []byte //not comparable } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:",reflect.DeepEqual(v1,v2)) //prints: v1 == v2: true m1 := map[string]string{"one": "a","two": "b"} m2 := map[string]string{"two": "b", "one": "a"} fmt.Println("m1 == m2:",reflect.DeepEqual(m1, m2)) //prints: m1 == m2: true s1 := []int{1, 2, 3} s2 := []int{1, 2, 3} fmt.Println("s1 == s2:",reflect.DeepEqual(s1, s2)) //prints: s1 == s2: true }
除了很慢(這個可能會也可能不會影響你的應用),DeepEqual()也有其餘自身的技巧。
package main import ( "fmt" "reflect" ) func main() { var b1 []byte = nil b2 := []byte{} fmt.Println("b1 == b2:",reflect.DeepEqual(b1, b2)) //prints: b1 == b2: false }
DeepEqual()不會認爲空的slice與「nil」的slice相等。這個行爲與你使用bytes.Equal()函數的行爲不一樣。bytes.Equal()認爲「nil」和空的slice是相等的。
package main import ( "fmt" "bytes" ) func main() { var b1 []byte = nil b2 := []byte{} fmt.Println("b1 == b2:",bytes.Equal(b1, b2)) //prints: b1 == b2: true }
DeepEqual()在比較slice時並不老是完美的。
package main import ( "fmt" "reflect" "encoding/json" ) func main() { var str string = "one" var in interface{} = "one" fmt.Println("str == in:",str == in,reflect.DeepEqual(str, in)) //prints: str == in: true true v1 := []string{"one","two"} v2 := []interface{}{"one","two"} fmt.Println("v1 == v2:",reflect.DeepEqual(v1, v2)) //prints: v1 == v2: false (not ok) data := map[string]interface{}{ "code": 200, "value": []string{"one","two"}, } encoded, _ := json.Marshal(data) var decoded map[string]interface{} json.Unmarshal(encoded, &decoded) fmt.Println("data == decoded:",reflect.DeepEqual(data, decoded)) //prints: data == decoded: false (not ok) }
若是你的byte slice(或者字符串)中包含文字數據,而當你要不區分大小寫形式的值時(在使用==,bytes.Equal(),或者bytes.Compare()),你可能會嘗試使用「bytes」和「string」包中的ToUpper()或者ToLower()函數。對於英語文本,這麼作是沒問題的,但對於許多其餘的語言來講就不行了。這時應該使用strings.EqualFold()和bytes.EqualFold()。
若是你的byte slice中包含須要驗證用戶數據的隱私信息(好比,加密哈希、tokens等),不要使用reflect.DeepEqual()、bytes.Equal(),或者bytes.Compare(),由於這些函數將會讓你的應用易於被定時攻擊。爲了不泄露時間信息,使用'crypto/subtle'包中的函數(即,subtle.ConstantTimeCompare())。
recover()函數能夠用於獲取/攔截panic。僅當在一個defer函數中被完成時,調用recover()將會完成這個小技巧。
Incorrect:
package main import "fmt" func main() { recover() //doesn't do anything panic("not good") recover() //won't be executed :) fmt.Println("ok") }
Works:
package main import "fmt" func main() { defer func() { fmt.Println("recovered:",recover()) }() panic("not good") }
recover()的調用僅當它在defer函數中被直接調用時纔有效。
Fails:
package main import "fmt" func doRecover() { fmt.Println("recovered =>",recover()) //prints: recovered => <nil> } func main() { defer func() { doRecover() //panic is not recovered }() panic("not good") }
在「range」語句中生成的數據的值是真實集合元素的拷貝。它們不是原有元素的引用。
這意味着更新這些值將不會修改原來的數據。同時也意味着使用這些值的地址將不會獲得原有數據的指針。
package main import "fmt" func main() { data := []int{1,2,3} for _,v := range data { v *= 10 //original item is not changed } fmt.Println("data:",data) //prints data: [1 2 3] }
若是你須要更新原有集合中的數據,使用索引操做符來得到數據。
package main import "fmt" func main() { data := []int{1,2,3} for i,_ := range data { data[i] *= 10 } fmt.Println("data:",data) //prints data: [10 20 30] }
若是你的集合保存的是指針,那規則會稍有不一樣。
若是要更新原有記錄指向的數據,你依然須要使用索引操做,但你可使用for range語句中的第二個值來更新存儲在目標位置的數據。
package main import "fmt" func main() { data := []*struct{num int} { {1},{2},{3} } for _,v := range data { v.num *= 10 } fmt.Println(data[0],data[1],data[2]) //prints &{10} &{20} &{30} }
當你從新劃分一個slice時,新的slice將引用原有slice的數組。若是你忘了這個行爲的話,在你的應用分配大量臨時的slice用於建立新的slice來引用原有數據的一小部分時,會致使難以預期的內存使用。
package main import "fmt" func get() []byte { raw := make([]byte,10000) fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x> return raw[:3] } func main() { data := get() fmt.Println(len(data),cap(data),&data[0]) //prints: 3 10000 <byte_addr_x> }
爲了不這個陷阱,你須要從臨時的slice中拷貝數據(而不是從新劃分slice)。
package main import "fmt" func get() []byte { raw := make([]byte,10000) fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x> res := make([]byte,3) copy(res,raw[:3]) return res } func main() { data := get() fmt.Println(len(data),cap(data),&data[0]) //prints: 3 3 <byte_addr_y> }
好比說你須要從新一個路徑(在slice中保存)。你經過修改第一個文件夾的名字,而後把名字合併來建立新的路勁,來從新劃分指向各個文件夾的路徑。
package main import ( "fmt" "bytes" ) func main() { path := []byte("AAAA/BBBBBBBBB") sepIndex := bytes.IndexByte(path,'/') dir1 := path[:sepIndex] dir2 := path[sepIndex+1:] fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAA fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB dir1 = append(dir1,"suffix"...) path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'}) fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffix fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => uffixBBBB (not ok) fmt.Println("new path =>",string(path)) }
結果與你想的不同。與"AAAAsuffix/BBBBBBBBB"相反,你將會獲得"AAAAsuffix/uffixBBBB"。這個狀況的發生是由於兩個文件夾的slice都潛在的引用了同一個原始的路徑slice。這意味着原始路徑也被修改了。根據你的應用,這也許會是個問題。
經過分配新的slice並拷貝須要的數據,你能夠修復這個問題。另外一個選擇是使用完整的slice表達式。
package main import ( "fmt" "bytes" ) func main() { path := []byte("AAAA/BBBBBBBBB") sepIndex := bytes.IndexByte(path,'/') dir1 := path[:sepIndex:sepIndex] //full slice expression dir2 := path[sepIndex+1:] fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAA fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB dir1 = append(dir1,"suffix"...) path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'}) fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffix fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB (ok now) fmt.Println("new path =>",string(path)) }
完整的slice表達式中的額外參數能夠控制新的slice的容量。如今在那個slice後添加元素將會觸發一個新的buffer分配,而不是覆蓋第二個slice中的數據。
多個slice能夠引用同一個數據。好比,當你從一個已有的slice建立一個新的slice時,這就會發生。若是你的應用功能須要這種行爲,那麼你將須要關注下「走味的」slice。
在某些狀況下,在一個slice中添加新的數據,在原有數組沒法保持更多新的數據時,將致使分配一個新的數組。而如今其餘的slice還指向老的數組(和老的數據)。
import "fmt" func main() { s1 := []int{1,2,3} fmt.Println(len(s1),cap(s1),s1) //prints 3 3 [1 2 3] s2 := s1[1:] fmt.Println(len(s2),cap(s2),s2) //prints 2 2 [2 3] for i := range s2 { s2[i] += 20 } //still referencing the same array fmt.Println(s1) //prints [1 22 23] fmt.Println(s2) //prints [22 23] s2 = append(s2,4) for i := range s2 { s2[i] += 10 } //s1 is now "stale" fmt.Println(s1) //prints [1 22 23] fmt.Println(s2) //prints [32 33 14] }
當你經過把一個現有(非interface)的類型定義爲一個新的類型時,新的類型不會繼承現有類型的方法。
Fails:
package main import "sync" type myMutex sync.Mutex func main() { var mtx myMutex mtx.Lock() //error mtx.Unlock() //error }
Compile Errors:
/tmp/sandbox106401185/main.go:9: mtx.Lock undefined (type myMutex has no field or method Lock) /tmp/sandbox106401185/main.go:10: mtx.Unlock undefined (type myMutex has no field or method Unlock)
若是你確實須要原有類型的方法,你能夠定義一個新的struct類型,用匿名方式把原有類型嵌入其中。
Works:
package main import "sync" type myLocker struct { sync.Mutex } func main() { var lock myLocker lock.Lock() //ok lock.Unlock() //ok }
interface類型的聲明也會保留它們的方法集合。
Works:
package main import "sync" type myLocker sync.Locker func main() { var lock myLocker = new(sync.Mutex) lock.Lock() //ok lock.Unlock() //ok }
沒有標籤的「break」聲明只能從內部的switch/select代碼塊中跳出來。若是沒法使用「return」聲明的話,那就爲外部循環定義一個標籤是另外一個好的選擇。
package main import "fmt" func main() { loop: for { switch { case true: fmt.Println("breaking out...") break loop } } fmt.Println("out!") }
"goto"聲明也能夠完成這個功能。。。
這在Go中是個很常見的技巧。for語句中的迭代變量在每次迭代時被從新使用。這就意味着你在for循環中建立的閉包(即函數字面量)將會引用同一個變量(而在那些goroutine開始執行時就會獲得那個變量的值)。
Incorrect:
package main import ( "fmt" "time" ) func main() { data := []string{"one","two","three"} for _,v := range data { go func() { fmt.Println(v) }() } time.Sleep(3 * time.Second) //goroutines print: three, three, three }
最簡單的解決方法(不須要修改goroutine)是,在for循環代碼塊內把當前迭代的變量值保存到一個局部變量中。
Works:
package main import ( "fmt" "time" ) func main() { data := []string{"one","two","three"} for _,v := range data { vcopy := v // go func() { fmt.Println(vcopy) }() } time.Sleep(3 * time.Second) //goroutines print: one, two, three }
另外一個解決方法是把當前的迭代變量做爲匿名goroutine的參數。
Works:
package main import ( "fmt" "time" ) func main() { data := []string{"one","two","three"} for _,v := range data { go func(in string) { fmt.Println(in) }(v) } time.Sleep(3 * time.Second) //goroutines print: one, two, three }
下面這個陷阱稍微複雜一些的版本。
Incorrect:
package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []field{ {"one"},{"two"},{"three"} } for _,v := range data { go v.print() } time.Sleep(3 * time.Second) //goroutines print: three, three, three }
Works:
package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []field{ {"one"},{"two"},{"three"} } for _,v := range data { v := v go v.print() } time.Sleep(3 * time.Second) //goroutines print: one, two, three }
在運行這段代碼時你認爲會看到什麼結果?(緣由是什麼?)
package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []*field{ {"one"},{"two"},{"three"} } for _,v := range data { go v.print() } time.Sleep(3 * time.Second) }
被defer的函數的參數會在defer聲明時求值(而不是在函數實際執行時)。
package main import "fmt" func main() { var i int = 1 defer fmt.Println("result =>",func() int { return i * 2 }()) i++ //prints: result => 2 (not ok if you expected 4) }
被defer的調用會在包含的函數的末尾執行,而不是包含代碼塊的末尾。對於Go新手而言,一個很常犯的錯誤就是沒法區分被defer的代碼執行規則和變量做用規則。若是你有一個長時運行的函數,而函數內有一個for循環試圖在每次迭代時都defer資源清理調用,那就會出現問題。
package main import ( "fmt" "os" "path/filepath" ) func main() { if len(os.Args) != 2 { os.Exit(-1) } start, err := os.Stat(os.Args[1]) if err != nil || !start.IsDir(){ os.Exit(-1) } var targets []string filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error { if err != nil { return err } if !fi.Mode().IsRegular() { return nil } targets = append(targets,fpath) return nil }) for _,target := range targets { f, err := os.Open(target) if err != nil { fmt.Println("bad target:",target,"error:",err) //prints error: too many open files break } defer f.Close() //will not be closed at the end of this code block //do something with the file... } }
解決這個問題的一個方法是把代碼塊寫成一個函數。
package main import ( "fmt" "os" "path/filepath" ) func main() { if len(os.Args) != 2 { os.Exit(-1) } start, err := os.Stat(os.Args[1]) if err != nil || !start.IsDir(){ os.Exit(-1) } var targets []string filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error { if err != nil { return err } if !fi.Mode().IsRegular() { return nil } targets = append(targets,fpath) return nil }) for _,target := range targets { func() { f, err := os.Open(target) if err != nil { fmt.Println("bad target:",target,"error:",err) return } defer f.Close() //ok //do something with the file... }() } }
另外一個方法是去掉defer語句
失敗的類型斷言返回斷言聲明中使用的目標類型的「零值」。這在與隱藏變量混合時,會發生未知狀況。
Incorrect:
package main import "fmt" func main() { var data interface{} = "great" if data, ok := data.(int); ok { fmt.Println("[is an int] value =>",data) } else { fmt.Println("[not an int] value =>",data) //prints: [not an int] value => 0 (not "great") } }
Works:
package main import "fmt" func main() { var data interface{} = "great" if res, ok := data.(int); ok { fmt.Println("[is an int] value =>",res) } else { fmt.Println("[not an int] value =>",data) //prints: [not an int] value => great (as expected) } }
Rob Pike在2012年的Google I/O大會上所作的「Go Concurrency Patterns」的演講上,說道過幾種基礎的併發模式。從一組目標中獲取第一個結果就是其中之一。
func First(query string, replicas ...Search) Result { c := make(chan Result) searchReplica := func(i int) { c <- replicas[i](query) } for i := range replicas { go searchReplica(i) } return <-c }
這個函數在每次搜索重複時都會起一個goroutine。每一個goroutine把它的搜索結果發送到結果的channel中。結果channel的第一個值被返回。
那其餘goroutine的結果會怎樣呢?還有那些goroutine自身呢?
在First()函數中的結果channel是沒緩存的。這意味着只有第一個goroutine返回。其餘的goroutine會困在嘗試發送結果的過程當中。這意味着,若是你有不止一個的重複時,每一個調用將會泄露資源。
爲了不泄露,你須要確保全部的goroutine退出。一個不錯的方法是使用一個有足夠保存全部緩存結果的channel。
func First(query string, replicas ...Search) Result { c := make(chan Result,len(replicas)) searchReplica := func(i int) { c <- replicas[i](query) } for i := range replicas { go searchReplica(i) } return <-c }
另外一個不錯的解決方法是使用一個有default狀況的select語句和一個保存一個緩存結果的channel。default狀況保證了即便當結果channel沒法收到消息的狀況下,goroutine也不會堵塞。
func First(query string, replicas ...Search) Result { c := make(chan Result,1) searchReplica := func(i int) { select { case c <- replicas[i](query): default: } } for i := range replicas { go searchReplica(i) } return <-c }
你也可使用特殊的取消channel來終止workers。
func First(query string, replicas ...Search) Result { c := make(chan Result) done := make(chan struct{}) defer close(done) searchReplica := func(i int) { select { case c <- replicas[i](query): case <- done: } } for i := range replicas { go searchReplica(i) } return <-c }
爲什麼在演講中會包含這些bug?Rob Pike僅僅是不想把演示覆雜化。這麼做是合理的,但對於Go新手而言,可能會直接使用代碼,而不去思考它可能有問題。
只要值是可取址的,那在這個值上調用指針接收方法是沒問題的。換句話說,在某些狀況下,你不須要在有一個接收值的方法版本。
然而並非全部的變量是可取址的。Map的元素就不是。經過interface引用的變量也不是。
package main import "fmt" type data struct { name string } func (p *data) print() { fmt.Println("name:",p.name) } type printer interface { print() } func main() { d1 := data{"one"} d1.print() //ok var in printer = data{"two"} //error in.print() m := map[string]data {"x":data{"three"}} m["x"].print() //error }
Compile Errors:
/tmp/sandbox017696142/main.go:21: cannot use data literal (type data) as type printer in assignment: data does not implement printer (print method has pointer receiver) /tmp/sandbox017696142/main.go:25: cannot call pointer method on m["x"] /tmp/sandbox017696142/main.go:25: cannot take the address of m["x"]
若是你有一個struct值的map,你沒法更新單個的struct值。
Fails:
package main type data struct { name string } func main() { m := map[string]data {"x":{"one"}} m["x"].name = "two" //error }
Compile Error:
/tmp/sandbox380452744/main.go:9: cannot assign to m["x"].name
這個操做無效是由於map元素是沒法取址的。
而讓Go新手更加困惑的是slice元素是能夠取址的。
package main import "fmt" type data struct { name string } func main() { s := []data one s[0].name = "two" //ok fmt.Println(s) //prints: [{two}] }
注意在不久以前,使用編譯器之一(gccgo)是能夠更新map的元素值的,但這一行爲很快就被修復了 :-)它也被認爲是Go 1.3的潛在特性。在那時還不是要急需支持的,但依舊在todo list中。
第一個有效的方法是使用一個臨時變量。
package main import "fmt" type data struct { name string } func main() { m := map[string]data {"x":{"one"}} r := m["x"] r.name = "two" m["x"] = r fmt.Printf("%v",m) //prints: map[x:{two}] }
另外一個有效的方法是使用指針的map。
package main import "fmt" type data struct { name string } func main() { m := map[string]*data {"x":{"one"}} m["x"].name = "two" //ok fmt.Println(m["x"]) //prints: &{two} }
順便說下,當你運行下面的代碼時會發生什麼?
package main type data struct { name string } func main() { m := map[string]*data {"x":{"one"}} m["z"].name = "what?" //??? }
這在Go中是第二最多見的技巧,由於interface雖然看起來像指針,但並非指針。interface變量僅在類型和值爲「nil」時才爲「nil」。
interface的類型和值會根據用於建立對應interface變量的類型和值的變化而變化。當你檢查一個interface變量是否等於「nil」時,這就會致使未預期的行爲。
package main import "fmt" func main() { var data *byte var in interface{} fmt.Println(data,data == nil) //prints: <nil> true fmt.Println(in,in == nil) //prints: <nil> true in = data fmt.Println(in,in == nil) //prints: <nil> false //'data' is 'nil', but 'in' is not 'nil' }
當你的函數返回interface時,當心這個陷阱。
Incorrect:
package main import "fmt" func main() { doit := func(arg int) interface{} { var result *struct{} = nil if(arg > 0) { result = &struct{}{} } return result } if res := doit(-1); res != nil { fmt.Println("good result:",res) //prints: good result: <nil> //'res' is not 'nil', but its value is 'nil' } }
Works:
package main import "fmt" func main() { doit := func(arg int) interface{} { var result *struct{} = nil if(arg > 0) { result = &struct{}{} } else { return nil //return an explicit 'nil' } return result } if res := doit(-1); res != nil { fmt.Println("good result:",res) } else { fmt.Println("bad result (res is nil)") //here as expected } }
你並不老是知道變量是分配到棧仍是堆上。在C++中,使用new建立的變量老是在堆上。在Go中,即便是使用new()或者make()函數來分配,變量的位置仍是由編譯器決定。編譯器根據變量的大小和「泄露分析」的結果來決定其位置。這也意味着在局部變量上返回引用是沒問題的,而這在C或者C++這樣的語言中是不行的。
若是你想知道變量分配的位置,在「go build」或「go run」上傳入「-m「 gc標誌(即,go run -gcflags -m app.go)。
默認狀況下,Go僅使用一個執行上下文/OS線程(在當前的版本)。這個數量能夠經過設置GOMAXPROCS來提升。
一個常見的誤解是,GOMAXPROCS表示了CPU的數量,Go將使用這個數量來運行goroutine。而runtime.GOMAXPROCS()函數的文檔讓人更加的迷茫。GOMAXPROCS變量描述所討論OS線程的內容比較好。
你能夠設置GOMAXPROCS的數量大於CPU的數量。GOMAXPROCS的最大值是256。
package main import ( "fmt" "runtime" ) func main() { fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 1 fmt.Println(runtime.NumCPU()) //prints: 1 (on play.golang.org) runtime.GOMAXPROCS(20) fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 20 runtime.GOMAXPROCS(300) fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 256 }
Go可能會對某些操做進行從新排序,但它能保證在一個goroutine內的全部行爲順序是不變的。然而,它並不保證多goroutine的執行順序。
package main import ( "runtime" "time" ) var _ = runtime.GOMAXPROCS(3) var a, b int func u1() { a = 1 b = 2 } func u2() { a = 3 b = 4 } func p() { println(a) println(b) } func main() { go u1() go u2() go p() time.Sleep(1 * time.Second) }
若是你多運行幾回上面的代碼,你可能會發現a和b變量有多個不一樣的組合:
1 2
3 4
0 2
0 0
1 4
a和b最有趣的組合式是"02"。這代表b在a以前更新了。
若是你須要在多goroutine內放置讀寫順序的變化,你將須要使用channel,或者使用"sync"包構建合適的結構體。
有可能會出現這種狀況,一個無恥的goroutine阻止其餘goroutine運行。當你有一個不讓調度器運行的for循環時,這就會發生。
package main import "fmt" func main() { done := false go func(){ done = true }() for !done { } fmt.Println("done!") }
for循環並不須要是空的。只要它包含了不會觸發調度執行的代碼,就會發生這種問題。
調度器會在GC、「go」聲明、阻塞channel操做、阻塞系統調用和lock操做後運行。它也會在非內聯函數調用後執行。
package main import "fmt" func main() { done := false go func(){ done = true }() for !done { fmt.Println("not done!") //not inlined } fmt.Println("done!") }
要想知道你在for循環中調用的函數是不是內聯的,你能夠在「go build」或「go run」時傳入「-m」 gc標誌(如, go build -gcflags -m)。
另外一個選擇是顯式的喚起調度器。你可使用「runtime」包中的Goshed()函數。
package main import ( "fmt" "runtime" ) func main() { done := false go func(){ done = true }() for !done { runtime.Gosched() } fmt.Println("done!") }