本文Glide源碼基於4.9,版本下載地址以下:Glide 4.9java
因爲Glide源碼真的很複雜,所以本文只分析和貼出與圖片加載流程相關的功能以及代碼。另外本文Glide源碼基於4.9,與3.x的源碼仍是存在差別的,可是總體流程變化不大。git
對於Glide這個強大的Android圖片加載開源框架,相信你們並不陌生吧,反正筆者的話,正常項目中用的圖片加載框架大多數都是它,由於用起來真的很方便快捷,用起來便捷,但真的說明它的源碼就是那麼簡單嗎?因此今天想揭開Glide的神祕面紗,從源碼來分析一下Glide的圖片加載流程。github
在多數狀況下,咱們想要在界面加載並展現一張圖片只須要一行代碼就能實現了,以下所示:緩存
Glide.with(this).load(url).into(imageView);
複製代碼
因此咱們對Glide圖片加載流程的源碼分析能夠分爲三部曲:網絡
接下來就讓咱們一塊兒來彈奏這三部曲!多線程
首先,從使用中咱們知道,第一部曲中咱們先調用的是Glide的with方法,因此先來看看這個方法app
Glide#with框架
/** * Application類型 */
public static RequestManager with(@NonNull Context context) {
//getRetriever會返回RequestManagerRetriever的單例對象
//RequestManagerRetriever的get會返回RequestManager對象並綁定圖片加載的生命週期
return getRetriever(context).get(context);
}
/** * 非Application類型 */
public static RequestManager with(@NonNull Activity activity) {
//跟Application類型同樣會調用RequestManagerRetriever的get獲取RequestManager對象
//不過需注意在這裏傳遞的參數爲Activity
return getRetriever(activity).get(activity);
}
public static RequestManager with(@NonNull FragmentActivity activity) {
return getRetriever(activity).get(activity);
}
...
複製代碼
能夠發現,with方法是Glide類中的一組靜態方法,在Glide中有不少的重載方法,能夠傳入Context,Activity,Fragment等,而後with裏面的實現很簡單,就一句代碼,看返回類型就知道其功能是幹嗎,就是返回一個RequestManager對象。那麼具體是如何來獲得這個對象呢,讓咱們來看看!異步
在返回RequestManager對象對象前首先會返回RequestManagerRetriever對象,無論with的參數是什麼,調用的都是getRetriever方法,並且getRetriever並無重載方法,因此獲取RequestManagerRetriever對象的步驟是同樣的,讓咱們來追蹤一下究竟是如何獲取到這個RequestManagerRetriever對象的。ide
private static RequestManagerRetriever getRetriever(@Nullable Context context) {
...
//1.調用Glide.get獲取到Glide的對象,Glide對象中封裝了RequestManagerRetriever對象
//2.經過Glide的getRequestManagerRetriever()獲取到RequestManagerRetriever對象
return Glide.get(context).getRequestManagerRetriever();
}
public static Glide get(@NonNull Context context) {
if (glide == null) {
synchronized (Glide.class) {
if (glide == null) {
//重點關注
checkAndInitializeGlide(context);
}
}
}
return glide;
}
private static void checkAndInitializeGlide(@NonNull Context context) {
if (isInitializing) {
//若是同時進行兩次初始化會拋出該異常
throw new IllegalStateException("You cannot call Glide.get() in registerComponents(),"
+ " use the provided Glide instance instead");
}
isInitializing = true;
//進行初始化操做
initializeGlide(context);
isInitializing = false;
}
private static void initializeGlide(@NonNull Context context, @NonNull GlideBuilder builder) {
....
//構造Glide的實體對象,此時的builder爲GlideBuilder
Glide glide = builder.build(applicationContext);
....
}
複製代碼
首先getRetriever方法看起來好像跟with裏面的代碼很相似,其實主要作了兩件事:
在Glide的get方法就是簡單標準的單例實現。在initializeGlide中會經過GlideBuilder的build來構造Glide的實體對象,這個Glide的構造很重要,所以咱們來看看GlideBuilder的build方法是如何來構建Glide對象的
@NonNull
Glide build(@NonNull Context context) {
......
//構建管理線程池與緩存的執行引擎
if (engine == null) {
engine =
new Engine(
memoryCache,
diskCacheFactory,
diskCacheExecutor,
sourceExecutor,
GlideExecutor.newUnlimitedSourceExecutor(),
GlideExecutor.newAnimationExecutor(),
isActiveResourceRetentionAllowed);
}
//構建了一個RequestManagerRetriever對象
RequestManagerRetriever requestManagerRetriever =
new RequestManagerRetriever(requestManagerFactory);
//構建Glide對象,並將上面的衆多線程池和RequestManagerRetriever對象封裝進去
return new Glide(
context,
engine,
memoryCache,
bitmapPool,
arrayPool,
requestManagerRetriever,
connectivityMonitorFactory,
logLevel,
defaultRequestOptions.lock(),
defaultTransitionOptions,
defaultRequestListeners,
isLoggingRequestOriginsEnabled);
}
}
public class Glide implements ComponentCallbacks2 {
Glide(
@NonNull Context context,
@NonNull Engine engine,
@NonNull MemoryCache memoryCache,
@NonNull BitmapPool bitmapPool,
@NonNull ArrayPool arrayPool,
@NonNull RequestManagerRetriever requestManagerRetriever,
@NonNull ConnectivityMonitorFactory connectivityMonitorFactory,
int logLevel,
@NonNull RequestOptions defaultRequestOptions,
@NonNull Map<Class<?>, TransitionOptions<?, ?>> defaultTransitionOptions,
@NonNull List<RequestListener<Object>> defaultRequestListeners,
boolean isLoggingRequestOriginsEnabled) {
...
//將RequestManagerRetriever對象賦值到成員變量中
this.requestManagerRetriever = requestManagerRetriever;
....
//解碼器
StreamBitmapDecoder streamBitmapDecoder = new StreamBitmapDecoder(downsampler, arrayPool);
//添加到註冊表中
registry
.append(Registry.BUCKET_BITMAP, InputStream.class, Bitmap.class, streamBitmapDecoder)
....
/* Models */
//重點關注InputStreamRewinder
.register(new InputStreamRewinder.Factory(arrayPool))
....
//重點關注StringLoader.StreamFactory()
.append(String.class, InputStream.class, new StringLoader.StreamFactory())
....
//重點關注HttpUriLoader.Factory()
.append(Uri.class, InputStream.class, new HttpUriLoader.Factory())
....
//重點關注HttpGlideUrlLoader
.append(GlideUrl.class, InputStream.class, new HttpGlideUrlLoader.Factory())
....
/* Transcoders */
//重點關注BitmapDrawableTranscoder
.register(
Bitmap.class,
BitmapDrawable.class,
new BitmapDrawableTranscoder(resources))
.....
}
}
複製代碼
從上面能夠看出Glide對象的建立乾的事情賊多,也極其複雜,總的來講其職責以下:
其中在註冊表registry中,上面的代碼只列舉了幾個下面會用到的編解碼器,實際上註冊表的東西遠不止這幾個。咱們從新確認下咱們的目標獲取RequestManagerRetriever對象,在上面的代碼中已經new出了一個RequestManagerRetriever對象,並賦值到了Glide的成員變量,接下來就能夠經過Glide的getRequestManagerRetriever方法獲取到這個RequestManagerRetriever對象了。
讓咱們從新看看其中一個with方法
RequestManagerRetriever#with
public static RequestManager with(@NonNull Context context) {
return getRetriever(context).get(context);
}
複製代碼
當咱們獲取到了RequestManagerRetriever對象後,就須要經過RequestManagerRetriever的get方法獲取RequestManager對象,在RequestManagerRetriever類中get跟Glide的with同樣也有不少重載方法,重載方法對不一樣參數的處理是不一樣的,根據不一樣的處理能夠分爲兩種類型的參數:
RequestManagerRetriever#get
//Application類型
public RequestManager get(@NonNull Context context) {
if (context == null) {
throw new IllegalArgumentException("You cannot start a load on a null Context");
} else if (Util.isOnMainThread() && !(context instanceof Application)) {
//若在主線程且context不爲Application類型
if (context instanceof FragmentActivity) {
return get((FragmentActivity) context);
} else if (context instanceof Activity) {
return get((Activity) context);
} else if (context instanceof ContextWrapper) {
return get(((ContextWrapper) context).getBaseContext());
}
}
//若不在主線程或者爲Application類型的調用getApplicationManager獲取一個RequestManager對象
return getApplicationManager(context);
}
複製代碼
能夠發現,參數爲context的get有兩種處理:
在這裏咱們分析的是Application類型的,因此直接看getApplicationManager方法
RequestManagerRetriever#getApplicationManager
private RequestManager getApplicationManager(@NonNull Context context) {
if (applicationManager == null) {
synchronized (this) {
if (applicationManager == null) {
//get方法爲獲取Glide的單例對象,
//因爲上面已經建立好Glide的單例對象了,因此在這裏就直接取Glide的單例對象不需建立
Glide glide = Glide.get(context.getApplicationContext());
applicationManager =
factory.build(
glide,
new ApplicationLifecycle(),
new EmptyRequestManagerTreeNode(),
context.getApplicationContext());
}
}
}
return applicationManager;
}
public interface RequestManagerFactory {
@NonNull
RequestManager build( @NonNull Glide glide, @NonNull Lifecycle lifecycle, @NonNull RequestManagerTreeNode requestManagerTreeNode, @NonNull Context context);
}
private static final RequestManagerFactory DEFAULT_FACTORY = new RequestManagerFactory() {
@NonNull
@Override
public RequestManager build(@NonNull Glide glide, @NonNull Lifecycle lifecycle, @NonNull RequestManagerTreeNode requestManagerTreeNode, @NonNull Context context) {
return new RequestManager(glide, lifecycle, requestManagerTreeNode, context);
}
};
}
複製代碼
在上面的方法中,也是標準的單例實現,經過上面的分析咱們知道Glide已經建立好了,而且Glide的get也是單例實現,因此直接獲取到Glide對象,並new了一個ApplicationLifecycle,而後傳入Glide和ApplicationLifecycle對象等並建立了RequestManager對象從而實現與Application生命週期的綁定。
那麼爲何Glide能夠直接綁定Application的生命週期呢?
這是由於Application對象的生命週期就是App的生命週期,因此Glide加載圖片的生命週期直接與與應用程序的生命週期綁定的就行,不須要作特殊處理。
這裏咱們只以參數爲Activity類型的爲表明,由於其它非Application類型的處理與Activity基本是相似的。
RequestManagerRetriever#get
/** * 非Application類型 */
public RequestManager get(@NonNull FragmentActivity activity) {
if (Util.isOnBackgroundThread()) {
//若是在子線程則直接調用Aplication類型的get
return get(activity.getApplicationContext());
} else {
//判斷Activity是否銷燬
assertNotDestroyed(activity);
//獲取FragmentManager對象
FragmentManager fm = activity.getSupportFragmentManager();
//經過調用supportFragmentGet返回RequestManager
return supportFragmentGet(
activity, fm, /*parentHint=*/ null, isActivityVisible(activity));
}
}
複製代碼
對於非Application類型的,首先要判斷這個請求是在主線程中仍是子線程中,若是是子線程中就調用Application類型的get方法,這也能夠明白,由於在子線程中Glide的生命週期應該與Application的生命週期相一致。
若是是在主線程中,就調用supportFragmentGet方法來跟Activity的生命週期綁定。
RequestManagerRetriever#supportFragmentGet
private RequestManager supportFragmentGet( @NonNull Context context, @NonNull FragmentManager fm, @Nullable Fragment parentHint, boolean isParentVisible) {
//獲取SupportRequestManagerFragment
SupportRequestManagerFragment current =
getSupportRequestManagerFragment(fm, parentHint, isParentVisible);
//實現建立,添加Fragment
RequestManager requestManager = current.getRequestManager();
//若是首次加載則初始化requestManager
if (requestManager == null) {
Glide glide = Glide.get(context);
requestManager =
factory.build(
glide, current.getGlideLifecycle(), current.getRequestManagerTreeNode(), context);
//設置到SupportRequestManagerFragment中
current.setRequestManager(requestManager);
}
return requestManager;
}
複製代碼
supportFragmentGet是如何與Activity進行綁定的呢?其流程以下:
也許你會問爲何綁定了Activity中隱藏的Fragment生命週期就能與Activity進行綁定了呢?這是由於Fragment的生命週期與Activity是同步的,因此經過綁定的隱藏的Fragment就能監聽Activity的生命週期,進而實現Glide加載圖片的生命週期與Activity同步,而且經過這樣的方法還能避免Glide持有Activity的實例而發生內存泄漏問題。
到這裏with的工做就結束了,讓咱們來總結一下with的主要工做
建立一個目標爲Drawable的圖片加載請求,傳入須要加載的資源(String,URL,URI等)
從上面對with的分析,咱們知道with最終會返回一個RequestManager對象,故第二部曲的開始就是RequestManager的load方法。
RequestManager#load
public RequestBuilder<Drawable> load(@Nullable String string) {
//1.asDrawable建立一個目標爲Drawable的圖片加載請求
//2.調用load將加載的資源傳入
return asDrawable().load(string);
}
public RequestBuilder<Drawable> load(@Nullable Uri uri) {
return asDrawable().load(uri);
}
public RequestBuilder<Drawable> load(@Nullable URL url) {
return asDrawable().load(url);
}
.....
複製代碼
能夠發現load在RequestManager也是有不少重載方法的,可是下面咱們只分析最多見的加載圖片的load參數,即load(String url)。
在RequestManager的load方法中,首先會先調用asDrawable,讓咱們來看看asDrawable
public RequestBuilder<Drawable> asDrawable() {
return as(Drawable.class);
}
public <ResourceType> RequestBuilder<ResourceType> as( @NonNull Class<ResourceType> resourceClass) {
return new RequestBuilder<>(glide, this, resourceClass, context);
}
複製代碼
上面的代碼很簡單,就是建立了一個目標爲Drawable的圖片加載請求RequestBuilder。
因爲asDrawable返回的是RequestBuilder對象,所以下一步將會調用RequesBuilder的load方法
RequesBuilder#load
public RequestBuilder<TranscodeType> load(@Nullable String string) {
return loadGeneric(string);
}
private RequestBuilder<TranscodeType> loadGeneric(@Nullable Object model) {
//將數據賦值給RequestBuilder的靜態成員變量
this.model = model;
isModelSet = true;
return this;
}
複製代碼
上面的代碼很容易理解,load調用了loadGeneric方法,loadGeneric方法中將數據,此時將String類型的model賦值給了RequestBuilder的靜態成員變量。
load估計是三部曲中最簡單的一部曲子了,代碼簡單,也很容易理解。此部曲也是3.x與4.9的區別之一,在3.x的源碼中load原本還應該完成一項任務,即預先建立好對圖片進行一系列操做(加載,編解碼,轉碼)的對象。而經過上述對with的分析,咱們知道在4.9的源碼中,這項工做已經交給with來處理了,因此load相比較其它兩個來講,其工做是比較簡單的。
!!!高能預警,into的源碼分析將會很長很長很長
在子線程中網絡請求解析圖片,並回到主線程中展現圖片
下列的源碼基於load參數爲String,不採起內存緩存,磁盤緩存的狀況下
在上面對load的解析中咱們知道,load執行完後返回的是RequestBuilder對象,因此into的入口就是RequestBuilder
RequestBuilder#into
public ViewTarget<ImageView, TranscodeType> into(@NonNull ImageView view) {
.....
//返回ViewTarget對象
return into(
//glideContext爲GlideContext類型
glideContext.buildImageViewTarget(view, transcodeClass),
/*targetListener=*/ null,
requestOptions,
//含有綁定主線程Handler的線程池
Executors.mainThreadExecutor());
}
複製代碼
在上面的代碼中,咱們知道在調用into以前會先獲取要傳遞的參數,這裏咱們重點關注第一個參數和第四個參數。
首先咱們先分析GlideContext的buildImageViewTarget方法.
GlideContext#buildImageViewTarget
public <X> ViewTarget<ImageView, X> buildImageViewTarget( @NonNull ImageView imageView, @NonNull Class<X> transcodeClass) {
return imageViewTargetFactory.buildTarget(imageView, transcodeClass);
}
複製代碼
此時傳入的transcodeClass其實就是咱們在第二部曲中分析的asDrawable中傳入的Drawable.class,而後繼續調用了ImageViewTargetFactory的buildTarget方法。
ImageViewTargetFactory#buildTarget
public <Z> ViewTarget<ImageView, Z> buildTarget(@NonNull ImageView view, @NonNull Class<Z> clazz) {
if (Bitmap.class.equals(clazz)) {
//如果調用了asBitmap方法
return (ViewTarget<ImageView, Z>) new BitmapImageViewTarget(view);
} else if (Drawable.class.isAssignableFrom(clazz)) {
//不然
return (ViewTarget<ImageView, Z>) new DrawableImageViewTarget(view);
} else {
throw new IllegalArgumentException(
"Unhandled class: " + clazz + ", try .as*(Class).transcode(ResourceTranscoder)");
}
}
複製代碼
由於咱們並無調用asBitmap方法,而且傳入的是Drawable類型,因此返回的ViewTarget對象應該是DrawableImageViewTarget,這個對象在展現圖片時將會用到。
!!!注:下文代碼中出現的target,若是沒有特殊說明都是DrawableImageViewTarget對象。
讓咱們回到前面的into方法。
public ViewTarget<ImageView, TranscodeType> into(@NonNull ImageView view) {
....
//返回ViewTarget對象
return into(
//buildImageViewTarget建立ViewTarget對象
//transcodeClass若調用了asBitmap則爲Bitmap,相應的返回BitmapImageViewTarget,
//不然transcodeClass爲Drawable類型,返回DrawableImageViewTarget
glideContext.buildImageViewTarget(view, transcodeClass),
/*targetListener=*/ null,
requestOptions,
//含有綁定主線程Handler的線程池
Executors.mainThreadExecutor());
}
複製代碼
接着咱們繼續分析第四個參數
Executors#mainThreadExecutor
private static final Executor MAIN_THREAD_EXECUTOR =
new Executor() {
//綁定主線程的Looper
private final Handler handler = new Handler(Looper.getMainLooper());
@Override
public void execute(@NonNull Runnable command) {
handler.post(command);
}
};
public static Executor mainThreadExecutor() {
return MAIN_THREAD_EXECUTOR;
}
複製代碼
從上面能夠發如今這個mainThreadExecutor中返回的是MAIN_THREAD_EXECUTOR,而MAIN_THREAD_EXECUTOR聲明瞭一個綁定了主線程Looper的Handler,而後這個線程池的execute方法會執行handler的post方法,至關於在主線程中執行command的run方法。(這裏先講明白這個線程池,由於當分析到最後在主線程中顯示圖片時會從新分析到這個參數,另外這裏涉及到了Handler機制的知識,不懂的能夠看看前面寫的博客Android之Handler機制)
分析完了into的兩個參數,咱們接下來就看看這個重載into方法
RequestBuilder#into
private <Y extends Target<TranscodeType>> Y into( @NonNull Y target, @Nullable RequestListener<TranscodeType> targetListener, BaseRequestOptions<?> options, Executor callbackExecutor) {
Preconditions.checkNotNull(target);
if (!isModelSet) {
throw new IllegalArgumentException("You must call #load() before calling #into()");
}
//構建Requset對象,發出加載圖片請求
//注意第四個參數傳進去的是含有綁定主線程的Handler的線程池
Request request = buildRequest(target, targetListener, options, callbackExecutor);
//在開始前先釋放掉target對象已存在的請求
Request previous = target.getRequest();
if (request.isEquivalentTo(previous)
&& !isSkipMemoryCacheWithCompletePreviousRequest(options, previous)) {
request.recycle();
if (!Preconditions.checkNotNull(previous).isRunning()) {
previous.begin();
}
return target;
}
requestManager.clear(target);
//將請求設置到target中
target.setRequest(request);
//分發並執行網絡請求Request,此時的requestManager就是
requestManager.track(target, request);
return target;
}
複製代碼
咱們能夠發如今這個方法中,其實主要的工做有兩個:一是構建網絡請求的Request,二是執行網絡請求對象Request,接下來咱們就分別對這兩個工做進行分析。
RequestBuilder#buildRequest
private Request buildRequest( Target<TranscodeType> target, @Nullable RequestListener<TranscodeType> targetListener, BaseRequestOptions<?> requestOptions, Executor callbackExecutor) {
//重點關注buildRequestRecursive方法
return buildRequestRecursive(
target,
targetListener,
/*parentCoordinator=*/ null,
transitionOptions,
requestOptions.getPriority(),
requestOptions.getOverrideWidth(),
requestOptions.getOverrideHeight(),
requestOptions,
callbackExecutor);
}
private Request buildRequestRecursive( Target<TranscodeType> target, @Nullable RequestListener<TranscodeType> targetListener, @Nullable RequestCoordinator parentCoordinator, TransitionOptions<?, ? super TranscodeType> transitionOptions, Priority priority, int overrideWidth, int overrideHeight, BaseRequestOptions<?> requestOptions, Executor callbackExecutor) {
.....
//重點關注buildThumbnailRequestRecursive方法
Request mainRequest =
buildThumbnailRequestRecursive(
target,
targetListener,
parentCoordinator,
transitionOptions,
priority,
overrideWidth,
overrideHeight,
requestOptions,
callbackExecutor);
if (errorRequestCoordinator == null) {
return mainRequest;
}
......
}
private Request buildThumbnailRequestRecursive( Target<TranscodeType> target, RequestListener<TranscodeType> targetListener, @Nullable RequestCoordinator parentCoordinator, TransitionOptions<?, ? super TranscodeType> transitionOptions, Priority priority, int overrideWidth, int overrideHeight, BaseRequestOptions<?> requestOptions, Executor callbackExecutor) {
....
//重點關注,關鍵代碼
Request fullRequest =
obtainRequest(
target,
targetListener,
requestOptions,
coordinator,
transitionOptions,
priority,
overrideWidth,
overrideHeight,
callbackExecutor);
........
}
private Request obtainRequest( Target<TranscodeType> target, RequestListener<TranscodeType> targetListener, BaseRequestOptions<?> requestOptions, RequestCoordinator requestCoordinator, TransitionOptions<?, ? super TranscodeType> transitionOptions, Priority priority, int overrideWidth, int overrideHeight, Executor callbackExecutor) {
//調用了SingleRequest的obtain方法,將load中調用的全部API參數都組裝到Request對象當中
//此時的callbackExecutor爲含有綁定主線程Handler的線程池
return SingleRequest.obtain(
context,
glideContext,
model,
transcodeClass,
requestOptions,
overrideWidth,
overrideHeight,
priority,
target,
targetListener,
requestListeners,
requestCoordinator,
glideContext.getEngine(),
transitionOptions.getTransitionFactory(),
callbackExecutor);
}
複製代碼
通過一步一步調用,最終將會執行SingleRequest的obtain方法,因此咱們繼續看這個方法
SingleRequest#obtain方法
public static <R> SingleRequest<R> obtain( Context context, GlideContext glideContext, Object model, Class<R> transcodeClass, BaseRequestOptions<?> requestOptions, int overrideWidth, int overrideHeight, Priority priority, Target<R> target, RequestListener<R> targetListener, @Nullable List<RequestListener<R>> requestListeners, RequestCoordinator requestCoordinator, Engine engine, TransitionFactory<? super R> animationFactory, Executor callbackExecutor) {
@SuppressWarnings("unchecked") SingleRequest<R> request =
(SingleRequest<R>) POOL.acquire();
if (request == null) {
//建立SingleRequest對象
request = new SingleRequest<>();
}
//將傳入load中的API參數賦值到SingleRequest的成員變量
//最後一個參數爲主線程的線程池
request.init(
context,
glideContext,
model,
transcodeClass,
requestOptions,
overrideWidth,
overrideHeight,
priority,
target,
targetListener,
requestListeners,
requestCoordinator,
engine,
animationFactory,
callbackExecutor);
return request;
}
//對成員變量賦值
private synchronized void init( Context context, GlideContext glideContext, Object model, Class<R> transcodeClass, BaseRequestOptions<?> requestOptions, int overrideWidth, int overrideHeight, Priority priority, Target<R> target, RequestListener<R> targetListener, @Nullable List<RequestListener<R>> requestListeners, RequestCoordinator requestCoordinator, Engine engine, TransitionFactory<? super R> animationFactory, Executor callbackExecutor) {
this.context = context;
this.glideContext = glideContext;
this.model = model;
this.transcodeClass = transcodeClass;
this.requestOptions = requestOptions;
this.overrideWidth = overrideWidth;
this.overrideHeight = overrideHeight;
this.priority = priority;
this.target = target;
this.targetListener = targetListener;
this.requestListeners = requestListeners;
this.requestCoordinator = requestCoordinator;
this.engine = engine;
this.animationFactory = animationFactory;
this.callbackExecutor = callbackExecutor;
status = Status.PENDING;
if (requestOrigin == null && glideContext.isLoggingRequestOriginsEnabled()) {
requestOrigin = new RuntimeException("Glide request origin trace");
}
}
複製代碼
這個obtain方法其實就是建立了SingleRequest對象,而後調用了init方法進行成員變量的賦值,因此構建的網絡請求對象就是SingleRequest對象。
讓咱們回到into方法
private <Y extends Target<TranscodeType>> Y into( @NonNull Y target, @Nullable RequestListener<TranscodeType> targetListener, BaseRequestOptions<?> options, Executor callbackExecutor) {
//構建Requset對象,發出加載圖片請求
//最終構建的是SingleRequest對象
Request request = buildRequest(target, targetListener, options, callbackExecutor);
.....
//分發並執行網絡請求Request,此時的requestManager就是RequestManager對象
//target爲上述建立的DrawableImageViewTarget(若是忘記能夠從新看回2.1)
//request就是建立完成的singleRequest對象
requestManager.track(target, request);
return target;
}
複製代碼
這時候咱們已經成功構建出了SingleRequest對象了,而後調用了RequestManager的track方法進行分發並執行這個請求
RequestManager#track
synchronized void track(@NonNull Target<?> target, @NonNull Request request) {
targetTracker.track(target);
//執行網絡請求
requestTracker.runRequest(request);
}
複製代碼
RequestTracker#runRequest
public void runRequest(@NonNull Request request) {
//將每一個提交的請求加入到一個set中,從而實現管理請求
requests.add(request);
//判斷Glide當前是否處於暫停狀態
if (!isPaused) {
//若是不暫停,則調用SingleRequest的begin方法來執行request
request.begin();
} else {
request.clear();
if (Log.isLoggable(TAG, Log.VERBOSE)) {
Log.v(TAG, "Paused, delaying request");
}
//若是暫停,則先將當前的請求添加到待執行隊列裏面,等待暫停狀態解除後再執行
pendingRequests.add(request);
}
}
複製代碼
在加載圖片前,即開啓網絡請求前咱們須要將每一個請求加到set中來進行管理請求,而且還須要判斷Glide當前的狀態,由於咱們如今分析的是圖片加載流程,顯然這裏的Glide不是暫停狀態,因此會執行request的begin方法,因爲在上面咱們已經分析了網絡請求對象爲SingleRequest,因此這裏的request爲SingleRequest對象。
接着咱們來看看SingleRequest的begin方法
SingleRequest#begin
public synchronized void begin() {
....
//model爲load傳入的圖片URL地址
if (model == null) {
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
width = overrideWidth;
height = overrideHeight;
}
int logLevel = getFallbackDrawable() == null ? Log.WARN : Log.DEBUG;
//若是傳入的URL地址爲空,則會調用onLoadFailed
onLoadFailed(new GlideException("Received null model"), logLevel);
return;
}
status = Status.WAITING_FOR_SIZE;
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
//重點關注
onSizeReady(overrideWidth, overrideHeight);
} else {
 //getsize計算寬高,而後執行onSizeReady方法
target.getSize(this);
}
if ((status == Status.RUNNING || status == Status.WAITING_FOR_SIZE)
&& canNotifyStatusChanged()) {
//在圖片請求成功前,會先使用Loading佔位圖代替最終的圖片顯示
target.onLoadStarted(getPlaceholderDrawable());
}
.....
}
複製代碼
從上面的代碼中咱們能夠發現當model爲null時,即load傳入的圖片地址爲空時,會調用onLoadFailed方法
SingleRequest#onLoadFailed
private synchronized void onLoadFailed(GlideException e, int maxLogLevel) {
.....
loadStatus = null;
status = Status.FAILED;
isCallingCallbacks = true;
try {
//TODO: what if this is a thumbnail request?
boolean anyListenerHandledUpdatingTarget = false;
if (requestListeners != null) {
for (RequestListener<R> listener : requestListeners) {
anyListenerHandledUpdatingTarget |=
listener.onLoadFailed(e, model, target, isFirstReadyResource());
}
}
anyListenerHandledUpdatingTarget |=
targetListener != null
&& targetListener.onLoadFailed(e, model, target, isFirstReadyResource());
if (!anyListenerHandledUpdatingTarget) {
//重點關注這個方法
setErrorPlaceholder();
}
} finally {
isCallingCallbacks = false;
}
notifyLoadFailed();
}
private synchronized void setErrorPlaceholder() {
if (!canNotifyStatusChanged()) {
return;
}
Drawable error = null;
//先獲取fallback的圖片
if (model == null) {
error = getFallbackDrawable();
}
//若沒有設置fallback圖,則獲取error圖
if (error == null) {
error = getErrorDrawable();
}
//若沒有error圖,則再獲取一個loading的佔位圖
if (error == null) {
error = getPlaceholderDrawable();
}
//target爲DrawableImageViewTarget
target.onLoadFailed(error);
}
複製代碼
在onLoadFailed方法中咱們只須要關注setErrorPlaceholder方法,而在setErrorPlaceholder中主要的邏輯就是獲取錯誤時須要展現的圖片,按fallback>error>loading的優先級來獲取錯誤時的圖片,而後調用DrawableImageViewTarget的onLoadFailed方法。經過查看DrawableImageViewTarget,咱們能夠發現這個類中並無onLoadFailed方法,因此咱們天然而然找父類ImageViewTarget是否存在這個方法.
ImageViewTarget#onloadFailed
public void onLoadFailed(@Nullable Drawable errorDrawable) {
super.onLoadFailed(errorDrawable);
setResourceInternal(null);
//調用setDrawable將圖片顯示出來
setDrawable(errorDrawable);
}
public void setDrawable(Drawable drawable) {
//view就是ImageView,將圖片展現出來
view.setImageDrawable(drawable);
}
複製代碼
到這裏,錯誤的圖片就被顯示出來,從這裏咱們能夠看出Glide顯示錯誤的圖片的原則就是:當傳入圖片的url爲null時,會才採用fallback/error/loading的佔位圖進行代替。
分析完onLoadFailed,咱們回到SingleRequest的begin方法,原本按代碼順序接下來應該分析的是onSizeReady,可是因爲這個方法比較複雜而且onLoadStarted與onLoadStarted很相似,因此咱們先分析onLoadStarted,把onSizeReady放到最後。
SingleRequest#begin 與onLoadStarted相關的代碼
if ((status == Status.RUNNING || status == Status.WAITING_FOR_SIZE)
&& canNotifyStatusChanged()) {
//在圖片請求成功前,會先使用Loading佔位圖代替最終的圖片顯示
target.onLoadStarted(getPlaceholderDrawable());
}
複製代碼
看上面這個邏輯就是當圖片正在請求時或者等待執行onSizeReady方法時,就執行DrawableImageViewTarget的onLoadStarted方法,從onLoadFailed方法的分析咱們已經知道,onLoadFailed方法是在DrawableImageViewTarget父類ImageViewTarget中,故onLoadStarted也是在ImageViewTarget中,至於參數就是loading的佔位圖。
ImageViewTarget#onLoadStarted
public void onLoadStarted(@Nullable Drawable placeholder) {
super.onLoadStarted(placeholder);
setResourceInternal(null);
//在圖片請求開始前,會先使用Loading佔位圖代替最終的圖片顯示
setDrawable(placeholder);
}
public void setDrawable(Drawable drawable) {
//將圖片展現出來
view.setImageDrawable(drawable);
}
複製代碼
而後將loading的佔位圖顯示出來,即圖片請求成功前,會使用Loading佔位圖代替最終的圖片顯示。這也算是咱們常用的一個功能了。
到這裏咱們終於要分析重頭戲onSizeReady了,咱們先貼出相關代碼
SingleRequest#begin 與onSizeReady相關的代碼
//圖片加載有兩種狀況:
//1.使用了override()的API爲圖片指定了固定寬高
//2.無使用
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
//第一種狀況,指定了寬高的話調用onSizeReady加載
onSizeReady(overrideWidth, overrideHeight);
} else {
 //getsize計算寬高,而後執行onSizeReady方法
//(從DrawableImageViewTarget中向上追蹤,會在ViewTarget中發現這個方法)
target.getSize(this);
}
複製代碼
這個咱們只分析onSizeReady,由於getSize方法最終也是會調用onSizeReady的。
SingleRequest#onSizeReady
@Override
public synchronized void onSizeReady(int width, int height) {
....
status = Status.RUNNING;
loadStatus =
//重點關注,調用Engine的load構建任務
//重點關注倒數第二個參數,傳入自身SingleRequest,在回調的時候會使用
//重點關注倒數第一個參數,傳入有綁定主線程的Handler的線程池callbackExectuter
engine.load(
glideContext,
model,
requestOptions.getSignature(),
this.width,
this.height,
requestOptions.getResourceClass(),
transcodeClass,
priority,
requestOptions.getDiskCacheStrategy(),
requestOptions.getTransformations(),
requestOptions.isTransformationRequired(),
requestOptions.isScaleOnlyOrNoTransform(),
requestOptions.getOptions(),
requestOptions.isMemoryCacheable(),
requestOptions.getUseUnlimitedSourceGeneratorsPool(),
requestOptions.getUseAnimationPool(),
requestOptions.getOnlyRetrieveFromCache(),
this,
callbackExecutor);
}
複製代碼
能夠看出onSizeReady的實現交給了Engine的load方法實現了,這個Engine對象就是在第一部曲with中Glide構建時提到的執行引擎,在這裏還須要特別注意的是傳給load的最後兩個參數,由於這兩個參數在後面的分析須要用到。
Engine#load
public synchronized <R> LoadStatus load( GlideContext glideContext, Object model, Key signature, int width, int height, Class<?> resourceClass, Class<R> transcodeClass, Priority priority, DiskCacheStrategy diskCacheStrategy, Map<Class<?>, Transformation<?>> transformations, boolean isTransformationRequired, boolean isScaleOnlyOrNoTransform, Options options, boolean isMemoryCacheable, boolean useUnlimitedSourceExecutorPool, boolean useAnimationPool, boolean onlyRetrieveFromCache, ResourceCallback cb, Executor callbackExecutor) {
.....
//從緩存中查找key對應的任務
EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
if (current != null) {
//若是走到這說明該任務已經正在執行了,無需再次構建執行
//能夠先不看,從後面分析完後從新回頭看這個
current.addCallback(cb, callbackExecutor);
if (VERBOSE_IS_LOGGABLE) {
logWithTimeAndKey("Added to existing load", startTime, key);
}
return new LoadStatus(cb, current);
}
//走到這,說明這是個新任務
//建立EngineJob對象,用來開啓線程(異步加載圖片)
EngineJob<R> engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,
useUnlimitedSourceExecutorPool,
useAnimationPool,
onlyRetrieveFromCache);
//建立DecodeJob對象,用來對圖片解碼
DecodeJob<R> decodeJob =
decodeJobFactory.build(
glideContext,
model,
key,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
engineJob);
//添加到任務緩存中
jobs.put(key, engineJob);
//如今能夠不看
//在獲取數據回調進行照片展現時會從新分析到這個方法
engineJob.addCallback(cb, callbackExecutor);
//執行任務
engineJob.start(decodeJob);
...
return new LoadStatus(cb, engineJob);
}
複製代碼
結合上面的代碼和註釋,咱們能夠知道Engine.load的主要工做:
EngineJob#start
public synchronized void start(DecodeJob<R> decodeJob) {
this.decodeJob = decodeJob;
//獲取線程池
GlideExecutor executor = decodeJob.willDecodeFromCache()
? diskCacheExecutor
: getActiveSourceExecutor();
//執行DecodeJob的run方法
executor.execute(decodeJob);
}
複製代碼
調用線程池的execute方法,故接下來會執行DecodeJob的run方法
DecodeJob#run
public void run() {
....
try {
if (isCancelled) {
notifyFailed();
return;
}
//重點關注,調用runWrapped
runWrapped();
}
....
}
private void runWrapped() {
switch (runReason) {
case INITIALIZE:
//獲取任務場景
stage = getNextStage(Stage.INITIALIZE);
//獲取這個場景的執行者
currentGenerator = getNextGenerator();
//重點關注,執行者執行任務
runGenerators();
break;
case SWITCH_TO_SOURCE_SERVICE:
runGenerators();
break;
case DECODE_DATA:
decodeFromRetrievedData();
break;
default:
throw new IllegalStateException("Unrecognized run reason: " + runReason);
}
}
//獲取任務場景
private Stage getNextStage(Stage current) {
switch (current) {
case INITIALIZE:
//若配置的緩存策略容許從資源緩存中讀取數據,則返回Stage.RESOURCE_CACHE
return diskCacheStrategy.decodeCachedResource()
? Stage.RESOURCE_CACHE : getNextStage(Stage.RESOURCE_CACHE);
case RESOURCE_CACHE:
//若配置的緩存策略容許從源數據緩存讀取數據,則返回Stage.DATA_CACHE
return diskCacheStrategy.decodeCachedData()
? Stage.DATA_CACHE : getNextStage(Stage.DATA_CACHE);
case DATA_CACHE:
//若只能容許從緩存中讀取數據,則直接FINISH,不然返回Stage.SOURCE,表示加載新的資源
return onlyRetrieveFromCache ? Stage.FINISHED : Stage.SOURCE;
case SOURCE:
case FINISHED:
return Stage.FINISHED;
default:
throw new IllegalArgumentException("Unrecognized stage: " + current);
}
}
//獲取這個場景的執行者
private DataFetcherGenerator getNextGenerator() {
switch (stage) {
case RESOURCE_CACHE:
// 資源磁盤緩存的執行者
return new ResourceCacheGenerator(decodeHelper, this);
case DATA_CACHE:
// 源數據磁盤緩存的執行者
return new DataCacheGenerator(decodeHelper, this);
case SOURCE:
// 無緩存, 獲取數據的源的執行者
return new SourceGenerator(decodeHelper, this);
case FINISHED:
return null;
default:
throw new IllegalStateException("Unrecognized stage: " + stage);
}
}
private void runGenerators() {
currentThread = Thread.currentThread();
startFetchTime = LogTime.getLogTime();
boolean isStarted = false;
// 調用 DataFetcherGenerator.startNext() 執行了請求操做
//咱們這裏主要分析的是無緩存狀況,因此這裏的DataFetcherGenerator應該是SourceGenerator
while (!isCancelled && currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {
stage = getNextStage(stage);
currentGenerator = getNextGenerator();
if (stage == Stage.SOURCE) {
reschedule();
return;
}
}
.....
}
複製代碼
怎麼執行任務呢?大致上能夠分爲三個步驟:
場景和執行者是一一對應的,因爲咱們如今分析的是第一次加載圖片,而且沒有配置緩存策略,因此對應的任務場景爲無緩存狀況,與之相對應的執行者就是SourceGenerator對象,因此當執行任務時調用的是SourceGenerator的startNext方法
SourceGenerator#startNext
public boolean startNext() {
......
boolean started = false;
while (!started && hasNextModelLoader()) {
//從DecodeHelper的數據加載集合中, 獲取一個數據加載器
loadData = helper.getLoadData().get(loadDataListIndex++);
if (loadData != null
&& (helper.getDiskCacheStrategy().isDataCacheable(loadData.fetcher.getDataSource())
|| helper.hasLoadPath(loadData.fetcher.getDataClass()))) {
started = true;
//使用加載器fetcher執行數據加載
//此fetcher爲HttpUrlFetcher對象
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
複製代碼
首先來看看如何獲得數據加載器的集合
DecodeHelper#getLoadData
List<LoadData<?>> getLoadData() {
if (!isLoadDataSet) {
isLoadDataSet = true;
loadData.clear();
//從Glide註冊的register中獲取modelLoaders
List<ModelLoader<Object, ?>> modelLoaders = glideContext.getRegistry().getModelLoaders(model);
//遍歷modelLoaders
for (int i = 0, size = modelLoaders.size(); i < size; i++) {
//此時分析的model爲url的string格式,該其中一個實現類爲StringLoader
ModelLoader<Object, ?> modelLoader = modelLoaders.get(i);
//經過StringLoader構造loadData
//通過Glide的registry分析後最終會執行HttpGlideUrlLoader的buildLoadData方法
//最終的loadData封裝了HttpUrlFetcher對象
LoadData<?> current =
modelLoader.buildLoadData(model, width, height, options);
if (current != null) {
//添加到loadData集合中
loadData.add(current);
}
}
}
//最終返回的是含有HttpUrlFetcher對象的loadData集合
return loadData;
}
複製代碼
咱們來一步步解剖這個方法,首先須要從Glide註冊的registry中獲取modelLoaders,由於咱們全文以String爲例子,因此這裏的model將是String類型的。
!!!注意:在註冊表中註冊的都是ModelLoader的實現ModelLoaderFactory靜態工廠類,當調用Registry的getModelLoaders時會調用工廠類中的build方法,這裏就不貼出這其中的過程了,如今咱們只須要知道當調用getModelLoaders方法時會調用註冊表中對應工廠類的build方法。如今咱們須要回頭看看Glide構建時的註冊表,看看model爲String類型時有那些ModelLoader的靜態工廠類,下面只列舉幾個:
Glide#Glide構造器
registry
//重點關注StringLoader.StreamFactory()
.append(String.class, InputStream.class, new StringLoader.StreamFactory())
.append(String.class, ParcelFileDescriptor.class, new StringLoader.FileDescriptorFactory())
.append(
String.class, AssetFileDescriptor.class, new StringLoader.AssetFileDescriptorFactory())
複製代碼
這裏咱們以StringLoader.StreamFactory爲例子,因爲調用了getModelLoaders方法,因此會執行StringLoader.StreamFactory的build方法
StringLoader.StreamFactory()
public static class StreamFactory implements ModelLoaderFactory<String, InputStream> {
@NonNull
@Override
public ModelLoader<String, InputStream> build( @NonNull MultiModelLoaderFactory multiFactory) {
//從Glide的registry的models註冊表能夠得知
//這時候的multiFactory爲HttpUriLoader.Factory()
//不斷追蹤下去得知最終參數裏返回的是HttpGlideUrlLoader對象
return new StringLoader<>(multiFactory.build(Uri.class, InputStream.class));
}
.....
}
複製代碼
從build方法中,構建了StringLoader對象,可是其中的參數又調用了另一個MultiModelLoaderFactory,這時候咱們須要看會Glide的註冊表中,而後找到參數爲Uri.class, InputStream.class時構建的MultiModelLoaderFactory對象
Glide#Glide的構造器
registry
//重點關注HttpUriLoader.Factory()
.append(Uri.class, InputStream.class, new HttpUriLoader.Factory())
複製代碼
能夠發現這時候的MultiModelLoaderFactory對象將會是HttpUriLoader.Factory()類型的,因此咱們還須要看看其中的build方法
HttpUriLoader.Factory#build
public ModelLoader<Uri, InputStream> build(MultiModelLoaderFactory multiFactory) {
//根據Glide中的registry中的Models註冊表能夠知道
//這時候的multiFactory爲HttpGlideUrlLoader.Factory()
return new HttpUriLoader(multiFactory.build(GlideUrl.class, InputStream.class));
}
複製代碼
仍是跟上面同樣的步驟,繼續查看Glide的註冊表,找出參數爲GlideUrl.class, InputStream.class的MultiModelLoaderFactory對象
registry
//重點關注HttpGlideUrlLoader
.append(GlideUrl.class, InputStream.class, new HttpGlideUrlLoader.Factory())
複製代碼
再看看HttpGlideUrlLoader.Factory的build方法
HttpGlideUrlLoader.Factory#build
public ModelLoader<GlideUrl, InputStream> build(MultiModelLoaderFactory multiFactory) {
//最終返回的是HttpGlideUrlLoader對象
return new HttpGlideUrlLoader(modelCache);
}
複製代碼
這裏的build方法返回的是HttpGlideUrlLoader類型,因此最終構建StringLoader對象中的參數將是HttpGlideUrlLoader類型的。因而咱們看看StringLoader的構造器的實現。
StringLoader#StringLoader構造器
public StringLoader(ModelLoader<Uri, Data> uriLoader) {
//此時的uriLoader爲HttpGlideUrlLoader對象,賦值給靜態成員變量
this.uriLoader = uriLoader;
}
複製代碼
構建器就是簡單的給成員變量賦值,此時的uriLoader爲HttpGlideUrlLoader對象。這就是getModelLoaders所作的事,咱們繼續分析DecodeHelper的getLoadData方法,當獲取到了String的modelLoaders後會遍歷每個modelLoader,而後調用modelLoader的buildLoadData來構造loadData對象,這裏咱們直接用上面分析獲得的StringLoader爲例,讓咱們看看StringLoader的buildLoadData的實現
StringLoader#buildLoadData
public LoadData<Data> buildLoadData(@NonNull String model, int width, int height, @NonNull Options options) {
Uri uri = parseUri(model);
if (uri == null || !uriLoader.handles(uri)) {
return null;
}
//此時的uriLoader爲HttpGlideUrlLoader對象
return uriLoader.buildLoadData(uri, width, height, options);
}
複製代碼
由上面分析咱們已經知道此時StringLoader中的uriLoader爲HttpGlideUrlLoader對象,因此會繼續調用HttpGlideUrlLoader的buildLoadData方法
HttpGlideUrlLoader
public LoadData<InputStream> buildLoadData(@NonNull GlideUrl model, int width, int height, @NonNull Options options) {
// GlideUrls memoize parsed URLs so caching them saves a few object instantiations and time
// spent parsing urls.
GlideUrl url = model;
if (modelCache != null) {
url = modelCache.get(model, 0, 0);
if (url == null) {
modelCache.put(model, 0, 0, model);
url = model;
}
}
int timeout = options.get(TIMEOUT);
//建立了一個LoadData對象, 而且封裝了HttpUrlFetcher對象
return new LoadData<>(url, new HttpUrlFetcher(url, timeout));
}
複製代碼
其它代碼咱們並不須要過多的關注,只須要關注最後的返回值,能夠發現最後返回的是封裝了HttpUrlFetcher的LoadData對象,這樣getLoadData方法獲取到的就是封裝了HttpUrlFetcher的LoadData對象。讓咱們回到SourceGenerator的startNext方法。
SourceGenerator#startNext
public boolean startNext() {
......
boolean started = false;
while (!started && hasNextModelLoader()) {
//最終獲取的的對象就是封裝了HttpUrlFetcher的LoadData對象
loadData = helper.getLoadData().get(loadDataListIndex++);
if (loadData != null
&& (helper.getDiskCacheStrategy().isDataCacheable(loadData.fetcher.getDataSource())
|| helper.hasLoadPath(loadData.fetcher.getDataClass()))) {
started = true;
//使用加載器fetcher執行數據加載
//此fetcher爲HttpUrlFetcher對象
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
複製代碼
上面已經分析了loadData是封裝了HttpUrlFetcher的LoadData對象,因此執行數據加載其實就是調用了HttpUrlFetcher的loadData方法。
HttpUrlFetcher#loadData
public void loadData(@NonNull Priority priority, @NonNull DataCallback<? super InputStream> callback) {
long startTime = LogTime.getLogTime();
try {
//獲取網絡圖片的輸入流
InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
//將inputStream回調出去,callback爲DataCallback
callback.onDataReady(result);
}
......
}
//網絡請求代碼,利用了HttpURLConnection進行網絡請求
private InputStream loadDataWithRedirects(URL url, int redirects, URL lastUrl, Map<String, String> headers) throws IOException {
......
//靜態工廠模式建立HttpUrlConnection對象
urlConnection = connectionFactory.build(url);
for (Map.Entry<String, String> headerEntry : headers.entrySet()) {
urlConnection.addRequestProperty(headerEntry.getKey(), headerEntry.getValue());
}
//設置鏈接超時時間爲2500ms
urlConnection.setConnectTimeout(timeout);
//設置讀取超時時間爲2500ms
urlConnection.setReadTimeout(timeout);
//不使用http緩存
urlConnection.setUseCaches(false);
urlConnection.setDoInput(true);
// Stop the urlConnection instance of HttpUrlConnection from following redirects so that
// redirects will be handled by recursive calls to this method, loadDataWithRedirects.
urlConnection.setInstanceFollowRedirects(false);
// Connect explicitly to avoid errors in decoders if connection fails.
urlConnection.connect();
// Set the stream so that it's closed in cleanup to avoid resource leaks. See #2352.
stream = urlConnection.getInputStream();
if (isCancelled) {
return null;
}
final int statusCode = urlConnection.getResponseCode();
if (isHttpOk(statusCode)) {
//請求成功
return getStreamForSuccessfulRequest(urlConnection);
}
......
}
private InputStream getStreamForSuccessfulRequest(HttpURLConnection urlConnection) throws IOException {
if (TextUtils.isEmpty(urlConnection.getContentEncoding())) {
int contentLength = urlConnection.getContentLength();
stream = ContentLengthInputStream.obtain(urlConnection.getInputStream(), contentLength);
} else {
if (Log.isLoggable(TAG, Log.DEBUG)) {
Log.d(TAG, "Got non empty content encoding: " + urlConnection.getContentEncoding());
}
stream = urlConnection.getInputStream();
}
//最終返回的是圖片的InputStream對象,還未開始讀取數據
return stream;
}
複製代碼
能夠發現執行數據加載有兩個工做,首先是獲取數據的輸入流,這裏採起的是HttpURLConnection進行網絡請求,最終獲取到的是數據的InputStream對象,記住這時候並未開始讀取數據。
當獲取到輸入流後,還須要將這個輸入流返回出去,怎麼返回呢?
callback.onDataReady(result);
複製代碼
能夠發現這裏使用的是回調的方法將數據的輸入流回調出去。此時callbak爲DataCallback對象,根據回調的使用咱們知道下一步應該要找到實現DataCallback接口的類,怎麼找呢?這時候就須要往回找,調用loadData方法的是在SourceGenerator的startNext方法,因此咱們首選目標就是這個SourceGenerator類
SourceGenerator#onDataReady
class SourceGenerator implements DataFetcherGenerator, DataFetcher.DataCallback<Object>, DataFetcherGenerator.FetcherReadyCallback {
........
public void onDataReady(Object data) {
DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy();
if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) {
dataToCache = data;
....
} else {
//繼續回調FetcherReadyCallback的onDataFetcherReady方法,將data回調出去
cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher,
loadData.fetcher.getDataSource(), originalKey);
}
}
}
複製代碼
機智如咱們!果真SourceGenerator類實現了DataFetcher.DataCallback這個接口,而且在這個類找到了onDataReady方法,這個方法仍是選擇回調,回調了FetcherReadyCallback的onDataFetcherReady方法,因而咱們在往回找,並在心中默唸:在哪一個類中調用了SourceGenerator的startNext方法呢?而後你就會發現是在DecodeJob的run方法中調用了startNext這個方法,而後立刻看看DecodeJob是否實現了onDataFetcherReady接口!
DecodeJob#onDataFetcherReady
class DecodeJob<R> implements DataFetcherGenerator.FetcherReadyCallback, Runnable, Comparable<DecodeJob<?>>, Poolable {
.......
public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher, DataSource dataSource, Key attemptedKey) {
.......
if (Thread.currentThread() != currentThread) {
runReason = RunReason.DECODE_DATA;
callback.reschedule(this);
} else {
GlideTrace.beginSection("DecodeJob.decodeFromRetrievedData");
try {
//解析獲取的數據
decodeFromRetrievedData();
} finally {
GlideTrace.endSection();
}
}
}
private void decodeFromRetrievedData() {
....
try {
//獲取解析後
resource = decodeFromData(currentFetcher, currentData, currentDataSource);
} catch (GlideException e) {
e.setLoggingDetails(currentAttemptingKey, currentDataSource);
throwables.add(e);
}
if (resource != null) {
//通知外界資源獲取成功
notifyEncodeAndRelease(resource, currentDataSource);
} else {
runGenerators();
}
}
}
複製代碼
哇!超神了!果真是這樣!onDataFetcherReady方法中主要工做有兩件:
咱們先看看是如何解析數據的
DecodeJob
private <Data> Resource<R> decodeFromData(DataFetcher<?> fetcher, Data data, DataSource dataSource) throws GlideException {
try {
......
//重點關注decodeFromFetcher方法
Resource<R> result = decodeFromFetcher(data, dataSource);
if (Log.isLoggable(TAG, Log.VERBOSE)) {
logWithTimeAndKey("Decoded result " + result, startTime);
}
return result;
}
......
}
private <Data> Resource<R> decodeFromFetcher(Data data, DataSource dataSource) throws GlideException {
//獲取當前數據類的解析器LoadPath,此時的data爲InputStream對象
LoadPath<Data, ?, R> path = decodeHelper.getLoadPath((Class<Data>) data.getClass());
//經過解析器來解析數據
return runLoadPath(data, dataSource, path);
}
private <Data, ResourceType> Resource<R> runLoadPath(Data data, DataSource dataSource, LoadPath<Data, ResourceType, R> path) throws GlideException {
Options options = getOptionsWithHardwareConfig(dataSource);
//此時的data爲InputStream對象,故rewinder爲InputStreamRewinder對象
DataRewinder<Data> rewinder = glideContext.getRegistry().getRewinder(data);
try {
//將數據解析轉移到LoadPath.load方法中
return path.load(
rewinder, options, width, height, new DecodeCallback<ResourceType>(dataSource));
} finally {
rewinder.cleanup();
}
}
複製代碼
這裏的rewinder的獲取跟modelLoaders的獲取同樣須要從新看Glide構建中的註冊表registry,在這裏再也不詳細說明,由於data爲InputStream對象,因此rewinder爲InputStreamRewinder對象,而後調用LoadPath的load方法實現解析數據
LoadPath
public Resource<Transcode> load(DataRewinder<Data> rewinder, @NonNull Options options, int width, int height, DecodePath.DecodeCallback<ResourceType> decodeCallback) throws GlideException {
List<Throwable> throwables = Preconditions.checkNotNull(listPool.acquire());
try {
//重點關注
return loadWithExceptionList(rewinder, options, width, height, decodeCallback, throwables);
} finally {
listPool.release(throwables);
}
}
private Resource<Transcode> loadWithExceptionList(DataRewinder<Data> rewinder, @NonNull Options options, int width, int height, DecodePath.DecodeCallback<ResourceType> decodeCallback, List<Throwable> exceptions) throws GlideException {
Resource<Transcode> result = null;
//遍歷DecodePath集合
for (int i = 0, size = decodePaths.size(); i < size; i++) {
DecodePath<Data, ResourceType, Transcode> path = decodePaths.get(i);
try {
//調用DecodePath.decode真正進行數據解析
result = path.decode(rewinder, width, height, options, decodeCallback);
} catch (GlideException e) {
exceptions.add(e);
}
if (result != null) {
break;
}
}
if (result == null) {
throw new GlideException(failureMessage, new ArrayList<>(exceptions));
}
return result;
}
複製代碼
DecodePath
public Resource<Transcode> decode(DataRewinder<DataType> rewinder, int width, int height, @NonNull Options options, DecodeCallback<ResourceType> callback) throws GlideException {
//獲取到Resource<Bitmap>對象
Resource<ResourceType> decoded = decodeResource(rewinder, width, height, options);
//將資源轉化爲目標效果,如在構建request時設置的CenterCrop
Resource<ResourceType> transformed = callback.onResourceDecoded(decoded);
//將數據轉化爲目標格式,將Resource<Bitmap>轉換爲LazyBitmapDrawableResource對象
//可經過LazyBitmapDrawableResource的get獲取到BitmapDrawable對象
//該transcoder爲BitmapDrawableTranscoder
return transcoder.transcode(transformed, options);
}
複製代碼
LoadPath的load方法最終會調用DecodePath的decode來解析數據,DecodePath的decode的主要工做就是獲取到Resource對象,而後還要將Resource對象轉化成LazyBitmapDrawableResource。考慮到篇幅問題,在這裏就不分析如何獲得Resource對象,只分析如何將數據轉化爲目標格式,能夠經過Glide構造中的註冊表中找出Bitmap轉化成Drawable的轉化器爲BitmapDrawableTranscoder,因此實際上調用了BitmapDrawableTranscoder的transcode來進行轉換
BitmapDrawableTranscoder#transcode
public Resource<BitmapDrawable> transcode(@NonNull Resource<Bitmap> toTranscode, @NonNull Options options) {
//獲取LazyBitmapDrawableResource對象
return LazyBitmapDrawableResource.obtain(resources, toTranscode);
}
複製代碼
LazyBitmapDrawableResource
public static Resource<BitmapDrawable> obtain( @NonNull Resources resources, @Nullable Resource<Bitmap> bitmapResource) {
if (bitmapResource == null) {
return null;
}
//建立了一個LazyBitmapDrawableResource對象
return new LazyBitmapDrawableResource(resources, bitmapResource);
}
public BitmapDrawable get() {
//返回一個BitmapDrawable對象
return new BitmapDrawable(resources, bitmapResource.get());
}
複製代碼
追蹤下去能夠發現transcode最終會獲得一個封裝了Resource的對象,而後看LazyBitmapDrawableResource的get方法,能夠獲得一個BitmapDrawable對象,即目標格式。到這裏就成功將數據解析成LazyBitmapDrawableResource對象。
既然解析完數據,剩下的工做就是將數據顯示出來,因而咱們得從新看回DecodeJob的decodeFromRetrievedData方法
DecodeJob
private void decodeFromRetrievedData() {
....
try {
//解析成功後resource爲封裝了Resource<Bitmap>的LazyBitmapDrawableResource對象
//可經過get方法獲取到BitmapDrawable對象
resource = decodeFromData(currentFetcher, currentData, currentDataSource);
} catch (GlideException e) {
e.setLoggingDetails(currentAttemptingKey, currentDataSource);
throwables.add(e);
}
if (resource != null) {
//通知外界資源獲取成功
notifyEncodeAndRelease(resource, currentDataSource);
} else {
runGenerators();
}
}
private void notifyEncodeAndRelease(Resource<R> resource, DataSource dataSource) {
.....
//重點關注
notifyComplete(result, dataSource);
......
}
private void notifyComplete(Resource<R> resource, DataSource dataSource) {
setNotifiedOrThrow();
//回調,注意此時的callback爲EngineJob(可回頭看Engine中DecodeJob的建立)
callback.onResourceReady(resource, dataSource);
}
複製代碼
嘻嘻,看到最後又來到了咱們熟悉的回調方法,看到這個callback你可能會一臉茫然,這個callback哪一個對象呢?別急,讓咱們來一步步分析。
首先先肯定下這個notifyComplete是在DecodeJob類中,所以callback應該是其成員變量,而後咱們得找出賦值的地方
//重點關注倒數第二個參數,callback的類型爲CallBack
DecodeJob<R> init( GlideContext glideContext, Object model, EngineKey loadKey, Key signature, int width, int height, Class<?> resourceClass, Class<R> transcodeClass, Priority priority, DiskCacheStrategy diskCacheStrategy, Map<Class<?>, Transformation<?>> transformations, boolean isTransformationRequired, boolean isScaleOnlyOrNoTransform, boolean onlyRetrieveFromCache, Options options, Callback<R> callback, int order) {
decodeHelper.init(
glideContext,
model,
signature,
width,
height,
diskCacheStrategy,
resourceClass,
transcodeClass,
priority,
options,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
diskCacheProvider);
this.glideContext = glideContext;
this.signature = signature;
this.priority = priority;
this.loadKey = loadKey;
this.width = width;
this.height = height;
this.diskCacheStrategy = diskCacheStrategy;
this.onlyRetrieveFromCache = onlyRetrieveFromCache;
this.options = options;
this.callback = callback;
this.order = order;
this.runReason = RunReason.INITIALIZE;
this.model = model;
return this;
}
複製代碼
很容易的咱們發如今init方法會爲callback賦值,這時候得記住callback參數的具體位置爲倒數第二個。這時候你會想:哪裏會調用DecodeJob的init方法呢?而後揣摩:既然是賦值估計會在構建DecodeJob時候會調用到。因而問題就轉換爲:上文是在哪一個地方構建了DecodeJob?而後內心默唸:DecodeJob是用來執行任務的,因此應該在構建任務的時候會調用!(不過大多數的情形是:腦子裏一片空白,壓根想不出來,反正筆者在這裏就想不出來。因此這時候就能夠直接往上找到DecodeJob首次出現的位置),最終是會在Engine的load中找到DecodeJob的構建
Engine#load
public synchronized <R> LoadStatus load(....){
//重點關注倒數最後一個參數
DecodeJob<R> decodeJob =
decodeJobFactory.build(
glideContext,
model,
key,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
engineJob);
}
//重點關注最後一個參數
<R> DecodeJob<R> build(GlideContext glideContext, Object model, EngineKey loadKey, Key signature, int width, int height, Class<?> resourceClass, Class<R> transcodeClass, Priority priority, DiskCacheStrategy diskCacheStrategy, Map<Class<?>, Transformation<?>> transformations, boolean isTransformationRequired, boolean isScaleOnlyOrNoTransform, boolean onlyRetrieveFromCache, Options options, DecodeJob.Callback<R> callback) {
DecodeJob<R> result = Preconditions.checkNotNull((DecodeJob<R>) pool.acquire());
return result.init(
glideContext,
model,
loadKey,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
callback,
creationOrder++);
}
}
複製代碼
在上面的代碼中首先調用了DecodeJobFactory的build方法來構建DecodeJob,DecodeJobFactory是Engine的內部類,而後接着看DecodeJobFactory的build方法,哇!跟咱們想的徹底同樣!build方法中調用了DecodeJob的init方法,找到後可別忘了咱們的任務是幹嗎的!找到callback的值,因而看回build的callback的參數位置,在最後一個,而後往回看Engine的load中調用build的最後一個參數!engineJob!沒錯最後找到的callback的類型應該是EngineJob類型的,其實EngineJob是實現了DecodeJob.Callback接口的。因此接下來就會回調EngineJob的onResourceReady方法
EngineJob#onResourceReady
public void onResourceReady(Resource<R> resource, DataSource dataSource) {
synchronized (this) {
this.resource = resource;
this.dataSource = dataSource;
}
//重點關注
notifyCallbacksOfResult();
}
void notifyCallbacksOfResult() {
ResourceCallbacksAndExecutors copy;
Key localKey;
EngineResource<?> localResource;
synchronized (this) {
......
//重點關注cbs的類型
//查找cbs裏面的類型
copy = cbs.copy();
.....
}
//通知上層Engine的任務完成了
listener.onEngineJobComplete(this, localKey, localResource);
for (final ResourceCallbackAndExecutor entry : copy) {
//回調給ImageViewTarget來展現資源
entry.executor.execute(new CallResourceReady(entry.cb));
}
decrementPendingCallbacks();
}
複製代碼
又到了肯定參數類型的時刻了,趕忙召喚福爾摩斯上線!首先咱們先肯定EngineJob的onResourceReady方法中最重要的代碼片
for (final ResourceCallbackAndExecutor entry : copy) {
//回調給ImageViewTarget來展現資源
entry.executor.execute(new CallResourceReady(entry.cb));
}
複製代碼
在肯定分析線程池的execute的方法前,咱們須要作的事有:
如今咱們知道entry爲ResourceCallbackAndExecutor方法,因此咱們來看看這個類以及構造器
ResourceCallbackAndExecutor
static final class ResourceCallbackAndExecutor {
final ResourceCallback cb;
final Executor executor;
ResourceCallbackAndExecutor(ResourceCallback cb, Executor executor) {
this.cb = cb;
this.executor = executor;
}
}
複製代碼
能夠發現executor和cb都是ResourceCallbackAndExecutor中的成員變量,在構造時被賦值,因此咱們須要找到構造ResourceCallbackAndExecutor對象的地方,天然而然咱們會鎖定上面copy這個變量
EngineJob
final ResourceCallbacksAndExecutors cbs = new ResourceCallbacksAndExecutors();
void notifyCallbacksOfResult() {
ResourceCallbacksAndExecutors copy;
Key localKey;
EngineResource<?> localResource;
synchronized (this) {
......
//重點關注cbs的類型
//查找cbs裏面的類型
copy = cbs.copy();
.....
}
.....
}
ResourceCallbacksAndExecutors copy() {
return new ResourceCallbacksAndExecutors(new ArrayList<>(callbacksAndExecutors));
}
//cbs賦值的地方
synchronized void addCallback(final ResourceCallback cb, Executor callbackExecutor) {
stateVerifier.throwIfRecycled();
//此時的cb爲singleRequest類型,其實現了ResourceCallback接口
//callbackExecutor就是綁定了主線程Handler的線程池
//cbs的類型爲ResourceCallbacksAndExecutors
//add的內部實現就是建立ResourceCallbacksAndExecutor並將cb,callbackExecutor賦值到其成員變量
//而後再add到cbs中
cbs.add(cb, callbackExecutor);
......
}
void add(ResourceCallback cb, Executor executor) {
callbacksAndExecutors.add(new ResourceCallbackAndExecutor(cb, executor));
}
複製代碼
讓咱們看看copy賦值調用的地方,就是調用了ResourceCallbacksAndExecutors類型的cbs的copy方法,copy其實就是建立了ResourceCallbacksAndExecutor集合,這個集合其實就是cbs,咱們還須要找到cbs賦值的地方,找半天后你會發如今addCallback方法中會找到cbs的add方法,add方法的內部實現其實就是建立ResourceCallbacksAndExecutor並將cb,callbackExecutor賦值到其成員變量中,因此咱們還得肯定add方法的兩個參數是什麼?不知道你是否還有印象,當初在構建任務時咱們有專門提到過這個addCallback方法,讓咱們從新看看Engine的load方法。
Engine#load
....
//調用addCallback()註冊了一個ResourceCallback
//這裏的cb是load方法的倒數第二個參數,load是在singleRequest的onSizeReady()調用的
//查看後cb爲singleRequest類型
//從新看回EngineJob的addCallback方法
engineJob.addCallback(cb, callbackExecutor);
//在子線程中執行DecodeJob的run方法
engineJob.start(decodeJob);
複製代碼
要想肯定cb和callbackExecutor的類型,咱們還須要一步一步往回走
//特別關注最後兩個參數
public synchronized <R> LoadStatus load( GlideContext glideContext, Object model, Key signature, int width, int height, Class<?> resourceClass, Class<R> transcodeClass, Priority priority, DiskCacheStrategy diskCacheStrategy, Map<Class<?>, Transformation<?>> transformations, boolean isTransformationRequired, boolean isScaleOnlyOrNoTransform, Options options, boolean isMemoryCacheable, boolean useUnlimitedSourceExecutorPool, boolean useAnimationPool, boolean onlyRetrieveFromCache, ResourceCallback cb, Executor callbackExecutor) 複製代碼
SingleRequest#onSizeReady
loadStatus =
//重點關注倒數第二個參數,傳入的是this,即SingleRequest對象,其實現了ResourceCallback接口
//重點關注倒數第一個參數,傳入有綁定主線程的Handle的r線程池callbackExectuter
engine.load(
glideContext,
model,
requestOptions.getSignature(),
this.width,
this.height,
requestOptions.getResourceClass(),
transcodeClass,
priority,
requestOptions.getDiskCacheStrategy(),
requestOptions.getTransformations(),
requestOptions.isTransformationRequired(),
requestOptions.isScaleOnlyOrNoTransform(),
requestOptions.getOptions(),
requestOptions.isMemoryCacheable(),
requestOptions.getUseUnlimitedSourceGeneratorsPool(),
requestOptions.getUseAnimationPool(),
requestOptions.getOnlyRetrieveFromCache(),
this,
callbackExecutor);
複製代碼
SingleRequest的onSizeReady中咱們肯定了cb的類型爲SingleRequest對象,另一個參數的話因爲篇幅緣由就不一一貼出代碼了(都是上文貼過的代碼),你能夠直接從onSizeReady方法往回看,上面的註釋也會提到,最後你會發現這個callbackExecutor其實就是咱們一開始提到的含有綁定主線程Handler的線程池。讓咱們回到最初的地方
EngineJob#onResourceReady
for (final ResourceCallbackAndExecutor entry : copy) {
//回調給ImageViewTarget來展現資源
//entry.cb爲singleRequest類型類型
//entry.executor就是含有綁定了主線程的Handler的線程池,即MAIN_THREAD_EXECUTOR
entry.executor.execute(new CallResourceReady(entry.cb));
}
複製代碼
因此咱們來看看Executors的mainThreadExecutor方法(忘記的從新看上面的2.2)
private static final Executor MAIN_THREAD_EXECUTOR =
new Executor() {
//綁定主線程的Looper
private final Handler handler = new Handler(Looper.getMainLooper());
@Override
public void execute(@NonNull Runnable command) {
handler.post(command);
}
};
public static Executor mainThreadExecutor() {
return MAIN_THREAD_EXECUTOR;
}
複製代碼
根據Handler機制的相關知識,當調用MAIN_THREAD_EXECUTOR的execute方法後將會在主線程中執行CallResourceReady對象的run方法。因此咱們看看CallResourceReady的run方法
EngineJob.CallResourceReady#run
public void run() {
synchronized (EngineJob.this) {
if (cbs.contains(cb)) {
// Acquire for this particular callback.
engineResource.acquire();
//重點關注,此時cb爲SingleRequest對象
callCallbackOnResourceReady(cb);
removeCallback(cb);
}
decrementPendingCallbacks();
}
}
}
synchronized void callCallbackOnResourceReady(ResourceCallback cb) {
try {
//回調,將目標數據回調出去
//此時的cb爲singleRequest類型
cb.onResourceReady(engineResource, dataSource);
} catch (Throwable t) {
throw new CallbackException(t);
}
}
複製代碼
看到這是否是很開心(實際頭皮發麻)!又來到了咱們熟悉的回調了,此時的cb是SingleRequest類型,咱們已經在上文分析過了。因此會調用SingleRequest的onResourceReady方法
SingleRequest#onResourceReady
public synchronized void onResourceReady(Resource<?> resource, DataSource dataSource) {
.......
//重點關注
onResourceReady((Resource<R>) resource, (R) received, dataSource);
}
private synchronized void onResourceReady(Resource<R> resource, R result, DataSource dataSource) {
//第一次加載
boolean isFirstResource = isFirstReadyResource();
status = Status.COMPLETE;
this.resource = resource;
if (glideContext.getLogLevel() <= Log.DEBUG) {
Log.d(GLIDE_TAG, "Finished loading " + result.getClass().getSimpleName() + " from "
+ dataSource + " for " + model + " with size [" + width + "x" + height + "] in "
+ LogTime.getElapsedMillis(startTime) + " ms");
}
isCallingCallbacks = true;
try {
boolean anyListenerHandledUpdatingTarget = false;
//若是在使用時設置listener的話,就會回調其中的onResourceReady
if (requestListeners != null) {
for (RequestListener<R> listener : requestListeners) {
anyListenerHandledUpdatingTarget |=
listener.onResourceReady(result, model, target, dataSource, isFirstResource);
}
}
anyListenerHandledUpdatingTarget |=
targetListener != null
&& targetListener.onResourceReady(result, model, target, dataSource, isFirstResource);
if (!anyListenerHandledUpdatingTarget) {
Transition<? super R> animation =
animationFactory.build(dataSource, isFirstResource);
//展現照片
//此時的target爲DrawableImageViewTarget
target.onResourceReady(result, animation);
}
} finally {
isCallingCallbacks = false;
}
//通知加載成功
notifyLoadSuccess();
}
複製代碼
這裏咱們只須要關注target.onResourceReady(result, animation)這句代碼,target對象爲DrawableImageViewTarget,因此會調用DrawableImageViewTarget的onResourceReady方法,可是由於DrawableImageViewTarget是沒有onResourceReady這個方法的,因此應該是在其父類ImageViewTarget中
ImageViewTarget
public void onResourceReady(@NonNull Z resource, @Nullable Transition<? super Z> transition) {
//是否有動畫效果
if (transition == null || !transition.transition(resource, this)) {
//重點關注,靜態圖
setResourceInternal(resource);
} else {
//gif
maybeUpdateAnimatable(resource);
}
}
private void setResourceInternal(@Nullable Z resource) {
//調用setResource來展現照片
setResource(resource);
maybeUpdateAnimatable(resource);
}
//此方法爲抽象方法,由子類實現,因爲分析的是靜態圖,故實現的子類應該爲DrawableImageViewTarget
protected abstract void setResource(@Nullable Z resource);
複製代碼
這裏咱們以正常的靜態圖爲例子,因此接下來會調用setResourceInternal(resource)方法,而後繼續調用setResource(resource)方法來展現圖片,setResource在ImageViewTarget爲抽象方法,因此咱們繼續看回子類DrawableImageViewTarget的實現
DrawableImageViewTarget#setResource
protected void setResource(@Nullable Drawable resource) {
//成功展現照片
view.setImageDrawable(resource);
}
複製代碼
哇!看到這裏眼淚估計又要流下來了,沒錯setResource很簡單,就是直接將照片顯示出來!
into方法算的上是整個Glide圖片加載流程中邏輯最複雜的一部曲了,代碼量多,相對應的工做量也是超級多的,既當爹又當媽,既要網絡獲取數據,又要解析並顯示數據。整理後其主要工做以下圖:
Glide源碼閱讀仍是花了很長時間,首先閱讀了幾篇Glide3.x版本的文章和Glide3.7的源碼,而後又閱讀了Glide4.9的文章和源碼,最後再本身總結。閱讀完Glide4.9加載流程的源碼給個人感覺就是這回調是真的多,並且找回調的參數還挺費時間的。不過總體而言,心裏只有一句話,「Glide牛逼!」,用起來只有一行代碼,實際內部處理邏輯是多麼的複雜以及到位,也足以見得Glide的功能有多強大了。可是Glide功能的強大不只僅體如今圖片加載流程,還有其強大的緩存策略,讓咱們繼續領略Glide的強大: Glide 4.9源碼解析-緩存策略
參考博客: