使用Redis實現延時任務(一)

前提

最近在生產環境恰好遇到了延時任務的場景,調研了一下目前主流的方案,分析了一下優劣而且敲定了最終的方案。這篇文章記錄了調研的過程,以及初步方案的實現。java

候選方案對比

下面是想到的幾種實現延時任務的方案,總結了一下相應的優點和劣勢。mysql

方案 優點 劣勢 選用場景
JDK內置的延遲隊列DelayQueue 實現簡單 數據內存態,不可靠 一致性相對低的場景
調度框架和MySQL進行短間隔輪詢 實現簡單,可靠性高 存在明顯的性能瓶頸 數據量較少實時性相對低的場景
RabbitMQDLXTTL,通常稱爲死信隊列方案 異步交互能夠削峯 延時的時間長度不可控,若是數據須要持久化則性能會下降 -
調度框架和Redis進行短間隔輪詢 數據持久化,高性能 實現難度大 常見於支付結果回調方案
時間輪 實時性高 實現難度大,內存消耗大 實時性高的場景

若是應用的數據量不高,實時性要求比較低,選用調度框架和MySQL進行短間隔輪詢這個方案是最優的方案。可是筆者遇到的場景數據量相對比較大,實時性並不高,採用掃庫的方案必定會對MySQL實例形成比較大的壓力。記得很早以前,看過一個PPT叫《盒子科技聚合支付系統演進》,其中裏面有一張圖片給予筆者一點啓發:git

裏面恰好用到了調度框架和Redis進行短間隔輪詢實現延時任務的方案,不過爲了分攤應用的壓力,圖中的方案還作了分片處理。鑑於筆者當前業務緊迫,因此在第一期的方案暫時不考慮分片,只作了一個簡化版的實現。github

因爲PPT中沒有任何的代碼或者框架貼出,有些須要解決的技術點須要自行思考,下面會重現一次整個方案實現的詳細過程。web

場景設計

實際的生產場景是筆者負責的某個系統須要對接一個外部的資金方,每一筆資金下單後須要延時30分鐘推送對應的附件。這裏簡化爲一個訂單信息數據延遲處理的場景,就是每一筆下單記錄一條訂單消息(暫時叫作OrderMessage),訂單消息須要延遲5到15秒後進行異步處理。redis

否決的候選方案實現思路

下面介紹一下其它四個不選用的候選方案,結合一些僞代碼和流程分析一下實現過程。spring

JDK內置延遲隊列

DelayQueue是一個阻塞隊列的實現,它的隊列元素必須是Delayed的子類,這裏作個簡單的例子:sql

public class DelayQueueMain {

    private static final Logger LOGGER = LoggerFactory.getLogger(DelayQueueMain.class);

    public static void main(String[] args) throws Exception {
        DelayQueue<OrderMessage> queue = new DelayQueue<>();
        // 默認延遲5秒
        OrderMessage message = new OrderMessage("ORDER_ID_10086");
        queue.add(message);
        // 延遲6秒
        message = new OrderMessage("ORDER_ID_10087", 6);
        queue.add(message);
        // 延遲10秒
        message = new OrderMessage("ORDER_ID_10088", 10);
        queue.add(message);
        ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {
            Thread thread = new Thread(r);
            thread.setName("DelayWorker");
            thread.setDaemon(true);
            return thread;
        });
        LOGGER.info("開始執行調度線程...");
        executorService.execute(() -> {
            while (true) {
                try {
                    OrderMessage task = queue.take();
                    LOGGER.info("延遲處理訂單消息,{}", task.getDescription());
                } catch (Exception e) {
                    LOGGER.error(e.getMessage(), e);
                }
            }
        });
        Thread.sleep(Integer.MAX_VALUE);
    }

    private static class OrderMessage implements Delayed {

        private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

        /** * 默認延遲5000毫秒 */
        private static final long DELAY_MS = 1000L * 5;

        /** * 訂單ID */
        private final String orderId;

        /** * 建立時間戳 */
        private final long timestamp;

        /** * 過時時間 */
        private final long expire;

        /** * 描述 */
        private final String description;

        public OrderMessage(String orderId, long expireSeconds) {
            this.orderId = orderId;
            this.timestamp = System.currentTimeMillis();
            this.expire = this.timestamp + expireSeconds * 1000L;
            this.description = String.format("訂單[%s]-建立時間爲:%s,超時時間爲:%s", orderId,
                    LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F),
                    LocalDateTime.ofInstant(Instant.ofEpochMilli(expire), ZoneId.systemDefault()).format(F));
        }

        public OrderMessage(String orderId) {
            this.orderId = orderId;
            this.timestamp = System.currentTimeMillis();
            this.expire = this.timestamp + DELAY_MS;
            this.description = String.format("訂單[%s]-建立時間爲:%s,超時時間爲:%s", orderId,
                    LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F),
                    LocalDateTime.ofInstant(Instant.ofEpochMilli(expire), ZoneId.systemDefault()).format(F));
        }

        public String getOrderId() {
            return orderId;
        }

        public long getTimestamp() {
            return timestamp;
        }

        public long getExpire() {
            return expire;
        }

        public String getDescription() {
            return description;
        }

        @Override
        public long getDelay(TimeUnit unit) {
            return unit.convert(this.expire - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
        }

        @Override
        public int compareTo(Delayed o) {
            return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
        }
    }
}
複製代碼

注意一下,OrderMessage實現Delayed接口,關鍵是須要實現Delayed#getDelay()Delayed#compareTo()。運行一下main()方法:數據庫

10:16:08.240 [main] INFO club.throwable.delay.DelayQueueMain - 開始執行調度線程...
10:16:13.224 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10086]-建立時間爲:2019-08-20 10:16:08,超時時間爲:2019-08-20 10:16:13
10:16:14.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10087]-建立時間爲:2019-08-20 10:16:08,超時時間爲:2019-08-20 10:16:14
10:16:18.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10088]-建立時間爲:2019-08-20 10:16:08,超時時間爲:2019-08-20 10:16:18
複製代碼

調度框架 + MySQL

使用調度框架對MySQL表進行短間隔輪詢是實現難度比較低的方案,一般服務剛上線,表數據很少而且實時性不高的狀況下應該首選這個方案。不過要注意如下幾點:json

  • 注意輪詢間隔不能過短,不然會對MySQL實例產生影響。
  • 注意每次查詢的數量,結果集數量太多有可能會致使調度阻塞和佔用應用大量內存,從而影響時效性。
  • 注意要設計狀態值和最大重試次數,這樣才能儘可能避免大量數據積壓和重複查詢的問題。
  • 最好經過時間列作索引,查詢指定時間範圍內的數據。

引入QuartzMySQL的Java驅動包和spring-boot-starter-jdbc(這裏只是爲了方便用相對輕量級的框架實現,生產中能夠按場景按需選擇其餘更合理的框架):

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.48</version>
    <scope>test</scope>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-jdbc</artifactId>
    <version>2.1.7.RELEASE</version>
    <scope>test</scope>
</dependency>
<dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.3.1</version>
    <scope>test</scope>
</dependency>
複製代碼

假設表設計以下:

CREATE DATABASE `delayTask` CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_520_ci;

USE `delayTask`;

CREATE TABLE `t_order_message`
(
    id           BIGINT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
    order_id     VARCHAR(50) NOT NULL COMMENT '訂單ID',
    create_time  DATETIME    NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '建立日期時間',
    edit_time    DATETIME    NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改日期時間',
    retry_times  TINYINT     NOT NULL DEFAULT 0 COMMENT '重試次數',
    order_status TINYINT     NOT NULL DEFAULT 0 COMMENT '訂單狀態',
    INDEX idx_order_id (order_id),
    INDEX idx_create_time (create_time)
) COMMENT '訂單信息表';

# 寫入兩條測試數據
INSERT INTO t_order_message(order_id) VALUES ('10086'),('10087');
複製代碼

編寫代碼:

// 常量
public class OrderConstants {

    public static final int MAX_RETRY_TIMES = 5;

    public static final int PENDING = 0;

    public static final int SUCCESS = 1;

    public static final int FAIL = -1;

    public static final int LIMIT = 10;
}

// 實體
@Builder
@Data
public class OrderMessage {

    private Long id;
    private String orderId;
    private LocalDateTime createTime;
    private LocalDateTime editTime;
    private Integer retryTimes;
    private Integer orderStatus;
}

// DAO
@RequiredArgsConstructor
public class OrderMessageDao {

    private final JdbcTemplate jdbcTemplate;

    private static final ResultSetExtractor<List<OrderMessage>> M = r -> {
        List<OrderMessage> list = Lists.newArrayList();
        while (r.next()) {
            list.add(OrderMessage.builder()
                    .id(r.getLong("id"))
                    .orderId(r.getString("order_id"))
                    .createTime(r.getTimestamp("create_time").toLocalDateTime())
                    .editTime(r.getTimestamp("edit_time").toLocalDateTime())
                    .retryTimes(r.getInt("retry_times"))
                    .orderStatus(r.getInt("order_status"))
                    .build());
        }
        return list;
    };

    public List<OrderMessage> selectPendingRecords(LocalDateTime start, LocalDateTime end, List<Integer> statusList, int maxRetryTimes, int limit) {
        StringJoiner joiner = new StringJoiner(",");
        statusList.forEach(s -> joiner.add(String.valueOf(s)));
        return jdbcTemplate.query("SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? " +
                        "AND order_status IN (?) AND retry_times < ? LIMIT ?",
                p -> {
                    p.setTimestamp(1, Timestamp.valueOf(start));
                    p.setTimestamp(2, Timestamp.valueOf(end));
                    p.setString(3, joiner.toString());
                    p.setInt(4, maxRetryTimes);
                    p.setInt(5, limit);
                }, M);
    }

    public int updateOrderStatus(Long id, int status) {
        return jdbcTemplate.update("UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?",
                p -> {
                    p.setInt(1, status);
                    p.setTimestamp(2, Timestamp.valueOf(LocalDateTime.now()));
                    p.setLong(3, id);
                });
    }
}

// Service
@RequiredArgsConstructor
public class OrderMessageService {

    private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageService.class);

    private final OrderMessageDao orderMessageDao;

    private static final List<Integer> STATUS = Lists.newArrayList();

    static {
        STATUS.add(OrderConstants.PENDING);
        STATUS.add(OrderConstants.FAIL);
    }

    public void executeDelayJob() {
        LOGGER.info("訂單處理定時任務開始執行......");
        LocalDateTime end = LocalDateTime.now();
        // 一天前
        LocalDateTime start = end.minusDays(1);
        List<OrderMessage> list = orderMessageDao.selectPendingRecords(start, end, STATUS, OrderConstants.MAX_RETRY_TIMES, OrderConstants.LIMIT);
        if (!list.isEmpty()) {
            for (OrderMessage m : list) {
                LOGGER.info("處理訂單[{}],狀態由{}更新爲{}", m.getOrderId(), m.getOrderStatus(), OrderConstants.SUCCESS);
                // 這裏其實能夠優化爲批量更新
                orderMessageDao.updateOrderStatus(m.getId(), OrderConstants.SUCCESS);
            }
        }
        LOGGER.info("訂單處理定時任務開始完畢......");
    }
}

// Job
@DisallowConcurrentExecution
public class OrderMessageDelayJob implements Job {

    @Override
    public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {
        OrderMessageService service = (OrderMessageService) jobExecutionContext.getMergedJobDataMap().get("orderMessageService");
        service.executeDelayJob();
    }

    public static void main(String[] args) throws Exception {
        HikariConfig config = new HikariConfig();
        config.setJdbcUrl("jdbc:mysql://localhost:3306/delayTask?useSSL=false&characterEncoding=utf8");
        config.setDriverClassName(Driver.class.getName());
        config.setUsername("root");
        config.setPassword("root");
        HikariDataSource dataSource = new HikariDataSource(config);
        OrderMessageDao orderMessageDao = new OrderMessageDao(new JdbcTemplate(dataSource));
        OrderMessageService service = new OrderMessageService(orderMessageDao);
        // 內存模式的調度器
        StdSchedulerFactory factory = new StdSchedulerFactory();
        Scheduler scheduler = factory.getScheduler();
        // 這裏沒有用到IOC容器,直接用Quartz數據集合傳遞服務引用
        JobDataMap jobDataMap = new JobDataMap();
        jobDataMap.put("orderMessageService", service);
        // 新建Job
        JobDetail job = JobBuilder.newJob(OrderMessageDelayJob.class)
                .withIdentity("orderMessageDelayJob", "delayJob")
                .usingJobData(jobDataMap)
                .build();
        // 新建觸發器,10秒執行一次
        Trigger trigger = TriggerBuilder.newTrigger()
                .withIdentity("orderMessageDelayTrigger", "delayJob")
                .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(10).repeatForever())
                .build();
        scheduler.scheduleJob(job, trigger);
        // 啓動調度器
        scheduler.start();
        Thread.sleep(Integer.MAX_VALUE);
    }
}
複製代碼

這個例子裏面用了create_time作輪詢,實際上能夠添加一個調度時間schedule_time列作輪詢,這樣子才能更容易定製空閒時和忙碌時候的調度策略。上面的示例的運行效果以下:

11:58:27.202 [main] INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler (v2.3.1) 'DefaultQuartzScheduler' with instanceId 'NON_CLUSTERED' Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally. NOT STARTED. Currently in standby mode. Number of jobs executed: 0 Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads. Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered. 11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'DefaultQuartzScheduler' initialized from default resource file in Quartz package: 'quartz.properties' 11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 2.3.1 11:58:27.209 [main] INFO org.quartz.core.QuartzScheduler - Scheduler DefaultQuartzScheduler_$_NON_CLUSTERED started. 11:58:27.212 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers 11:58:27.217 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob', class=club.throwable.jdbc.OrderMessageDelayJob
11:58:27.219 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@10eb8c53
11:58:27.220 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers
11:58:27.221 [DefaultQuartzScheduler_Worker-1] DEBUG org.quartz.core.JobRunShell - Calling execute on job delayJob.orderMessageDelayJob
11:58:34.440 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始執行......
11:58:34.451 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@3d27ece4
11:58:34.459 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@64e808af
11:58:34.470 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@79c8c2b7
11:58:34.477 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@19a62369
11:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@1673d017
11:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - After adding stats (total=10, active=0, idle=10, waiting=0) 11:58:34.559 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL query 11:58:34.565 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? AND order_status IN (?) AND retry_times < ? LIMIT ?] 11:58:34.645 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource 11:58:35.210 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - SQLWarning ignored: SQL state '22007', error code '1292', message [Truncated incorrect DOUBLE value: '0,-1'] 11:58:35.335 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10086],狀態由0更新爲1 11:58:35.342 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update 11:58:35.346 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]
11:58:35.347 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource
11:58:35.354 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10087],狀態由0更新爲1
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource
11:58:35.361 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始完畢......
11:58:35.363 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers
11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob', class=club.throwable.jdbc.OrderMessageDelayJob
11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers
複製代碼

RabbitMQ死信隊列

使用RabbitMQ死信隊列依賴於RabbitMQ的兩個特性:TTLDLX

  • TTLTime To Live,消息存活時間,包括兩個維度:隊列消息存活時間和消息自己的存活時間。
  • DLXDead Letter Exchange,死信交換器。

畫個圖描述一下這兩個特性:

下面爲了簡單起見,TTL使用了針對隊列的維度。引入RabbitMQ的Java驅動:

<dependency>
    <groupId>com.rabbitmq</groupId>
    <artifactId>amqp-client</artifactId>
    <version>5.7.3</version>
    <scope>test</scope>
</dependency>
複製代碼

代碼以下:

public class DlxMain {

    private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
    private static final Logger LOGGER = LoggerFactory.getLogger(DlxMain.class);

    public static void main(String[] args) throws Exception {
        ConnectionFactory factory = new ConnectionFactory();
        Connection connection = factory.newConnection();
        Channel producerChannel = connection.createChannel();
        Channel consumerChannel = connection.createChannel();
        // dlx交換器名稱爲dlx.exchange,類型是direct,綁定鍵爲dlx.key,隊列名爲dlx.queue
        producerChannel.exchangeDeclare("dlx.exchange", "direct");
        producerChannel.queueDeclare("dlx.queue", false, false, false, null);
        producerChannel.queueBind("dlx.queue", "dlx.exchange", "dlx.key");
        Map<String, Object> queueArgs = new HashMap<>();
        // 設置隊列消息過時時間,5秒
        queueArgs.put("x-message-ttl", 5000);
        // 指定DLX相關參數
        queueArgs.put("x-dead-letter-exchange", "dlx.exchange");
        queueArgs.put("x-dead-letter-routing-key", "dlx.key");
        // 聲明業務隊列
        producerChannel.queueDeclare("business.queue", false, false, false, queueArgs);
        ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {
            Thread thread = new Thread(r);
            thread.setDaemon(true);
            thread.setName("DlxConsumer");
            return thread;
        });
        // 啓動消費者
        executorService.execute(() -> {
            try {
                consumerChannel.basicConsume("dlx.queue", true, new DlxConsumer(consumerChannel));
            } catch (IOException e) {
                LOGGER.error(e.getMessage(), e);
            }
        });
        OrderMessage message = new OrderMessage("10086");
        producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,
                message.getDescription().getBytes(StandardCharsets.UTF_8));
        LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());

        message = new OrderMessage("10087");
        producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,
                message.getDescription().getBytes(StandardCharsets.UTF_8));
        LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());

        message = new OrderMessage("10088");
        producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,
                message.getDescription().getBytes(StandardCharsets.UTF_8));
        LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());

        Thread.sleep(Integer.MAX_VALUE);
    }

    private static class DlxConsumer extends DefaultConsumer {

        DlxConsumer(Channel channel) {
            super(channel);
        }

        @Override
        public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
            LOGGER.info("處理消息成功:{}", new String(body, StandardCharsets.UTF_8));
        }
    }

    private static class OrderMessage {

        private final String orderId;
        private final long timestamp;
        private final String description;

        OrderMessage(String orderId) {
            this.orderId = orderId;
            this.timestamp = System.currentTimeMillis();
            this.description = String.format("訂單[%s],訂單建立時間爲:%s", orderId,
                    LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F));
        }

        public String getOrderId() {
            return orderId;
        }

        public long getTimestamp() {
            return timestamp;
        }

        public String getDescription() {
            return description;
        }
    }
}
複製代碼

運行main()方法結果以下:

16:35:58.638 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:10086
16:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:10087
16:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:10088
16:36:03.646 [pool-1-thread-4] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10086],訂單建立時間爲:2019-08-20 16:35:58
16:36:03.670 [pool-1-thread-5] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10087],訂單建立時間爲:2019-08-20 16:35:58
16:36:03.670 [pool-1-thread-6] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10088],訂單建立時間爲:2019-08-20 16:35:58
複製代碼

時間輪

時間輪TimingWheel是一種高效、低延遲的調度數據結構,底層採用數組實現存儲任務列表的環形隊列,示意圖以下:

這裏暫時不對時間輪和其實現做分析,只簡單舉例說明怎麼使用時間輪實現延時任務。這裏使用Netty提供的HashedWheelTimer,引入依賴:

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-common</artifactId>
    <version>4.1.39.Final</version>
</dependency>
複製代碼

代碼以下:

public class HashedWheelTimerMain {

    private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");

    public static void main(String[] args) throws Exception {
        AtomicInteger counter = new AtomicInteger();
        ThreadFactory factory = r -> {
            Thread thread = new Thread(r);
            thread.setDaemon(true);
            thread.setName("HashedWheelTimerWorker-" + counter.getAndIncrement());
            return thread;
        };
        // tickDuration - 每tick一次的時間間隔, 每tick一次就會到達下一個槽位
        // unit - tickDuration的時間單位
        // ticksPerWhee - 時間輪中的槽位數
        Timer timer = new HashedWheelTimer(factory, 1, TimeUnit.SECONDS, 60);
        TimerTask timerTask = new DefaultTimerTask("10086");
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        timerTask = new DefaultTimerTask("10087");
        timer.newTimeout(timerTask, 10, TimeUnit.SECONDS);
        timerTask = new DefaultTimerTask("10088");
        timer.newTimeout(timerTask, 15, TimeUnit.SECONDS);
        Thread.sleep(Integer.MAX_VALUE);
    }

    private static class DefaultTimerTask implements TimerTask {

        private final String orderId;
        private final long timestamp;

        public DefaultTimerTask(String orderId) {
            this.orderId = orderId;
            this.timestamp = System.currentTimeMillis();
        }

        @Override
        public void run(Timeout timeout) throws Exception {
            System.out.println(String.format("任務執行時間:%s,訂單建立時間:%s,訂單ID:%s",
                    LocalDateTime.now().format(F), LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F), orderId));
        }
    }
}
複製代碼

運行結果:

任務執行時間:2019-08-20 17:19:49.310,訂單建立時間:2019-08-20 17:19:43.294,訂單ID:10086
任務執行時間:2019-08-20 17:19:54.297,訂單建立時間:2019-08-20 17:19:43.301,訂單ID:10087
任務執行時間:2019-08-20 17:19:59.297,訂單建立時間:2019-08-20 17:19:43.301,訂單ID:10088
複製代碼

通常來講,任務執行的時候應該使用另外的業務線程池,以避免阻塞時間輪自己的運動。

選用的方案實現過程

最終選用了基於Redis的有序集合Sorted SetQuartz短輪詢進行實現。具體方案是:

  1. 訂單建立的時候,訂單ID和當前時間戳分別做爲Sorted Set的member和score添加到訂單隊列Sorted Set中。
  2. 訂單建立的時候,訂單ID和推送內容JSON字符串分別做爲field和value添加到訂單隊列內容Hash中。
  3. 第1步和第2步操做的時候用Lua腳本保證原子性。
  4. 使用一個異步線程經過Sorted Set的命令ZREVRANGEBYSCORE彈出指定數量的訂單ID對應的訂單隊列內容Hash中的訂單推送內容數據進行處理。

對於第4點處理有兩種方案:

  • 方案一:彈出訂單內容數據的同時進行數據刪除,也就是ZREVRANGEBYSCOREZREMHDEL命令要在同一個Lua腳本中執行,這樣的話Lua腳本的編寫難度大,而且因爲彈出數據已經在Redis中刪除,若是數據處理失敗則可能須要從數據庫從新查詢補償。
  • 方案二:彈出訂單內容數據以後,在數據處理完成的時候再主動刪除訂單隊列Sorted Set和訂單隊列內容Hash中對應的數據,這樣的話須要控制併發,有重複執行的可能性。

最終暫時選用了方案一,也就是從Sorted Set彈出訂單ID而且從Hash中獲取完推送數據以後立刻刪除這兩個集合中對應的數據。方案的流程圖大概是這樣:

這裏先詳細說明一下用到的Redis命令。

Sorted Set相關命令

  • ZADD命令 - 將一個或多個成員元素及其分數值加入到有序集當中。

ZADD KEY SCORE1 VALUE1.. SCOREN VALUEN


  • ZREVRANGEBYSCORE命令 - 返回有序集中指定分數區間內的全部的成員。有序集成員按分數值遞減(從大到小)的次序排列。

ZREVRANGEBYSCORE key max min [WITHSCORES] [LIMIT offset count]

  • max:分數區間 - 最大分數。
  • min:分數區間 - 最小分數。
  • WITHSCORES:可選參數,是否返回分數值,指定則會返回得分值。
  • LIMIT:可選參數,offset和count原理和MySQLLIMIT offset,size一致,若是不指定此參數則返回整個集合的數據。

  • ZREM命令 - 用於移除有序集中的一個或多個成員,不存在的成員將被忽略。

ZREM key member [member ...]

Hash相關命令

  • HMSET命令 - 同時將多個field-value(字段-值)對設置到哈希表中。

HMSET KEY_NAME FIELD1 VALUE1 ...FIELDN VALUEN


  • HDEL命令 - 刪除哈希表key中的一個或多個指定字段,不存在的字段將被忽略。

HDEL KEY_NAME FIELD1.. FIELDN

Lua相關

  • 加載Lua腳本而且返回腳本的SHA-1字符串:SCRIPT LOAD script
  • 執行已經加載的Lua腳本:EVALSHA sha1 numkeys key [key ...] arg [arg ...]
  • unpack函數能夠把table類型的參數轉化爲可變參數,不過須要注意的是unpack函數必須使用在非變量定義的函數調用的最後一個參數,不然會失效,詳細見Stackoverflow的提問table.unpack() only returns the first element

PS:若是不熟悉Lua語言,建議系統學習一下,由於想用好Redis,必定離不開Lua。

引入依賴:

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-dependencies</artifactId>
            <version>2.1.7.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<dependencies>
    <dependency>
        <groupId>org.quartz-scheduler</groupId>
        <artifactId>quartz</artifactId>
        <version>2.3.1</version>
    </dependency>
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>3.1.0</version>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-jdbc</artifactId>
    </dependency>    
    <dependency>
        <groupId>org.springframework</groupId>
        <artifactId>spring-context-support</artifactId>
        <version>5.1.9.RELEASE</version>
    </dependency> 
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>1.18.8</version>
        <scope>provided</scope>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.59</version>
    </dependency>       
</dependencies>
複製代碼

編寫Lua腳本/lua/enqueue.lua/lua/dequeue.lua

-- /lua/enqueue.lua
local zset_key = KEYS[1]
local hash_key = KEYS[2]
local zset_value = ARGV[1]
local zset_score = ARGV[2]
local hash_field = ARGV[3]
local hash_value = ARGV[4]
redis.call('ZADD', zset_key, zset_score, zset_value)
redis.call('HSET', hash_key, hash_field, hash_value)
return nil

-- /lua/dequeue.lua
-- 參考jesque的部分Lua腳本實現
local zset_key = KEYS[1]
local hash_key = KEYS[2]
local min_score = ARGV[1]
local max_score = ARGV[2]
local offset = ARGV[3]
local limit = ARGV[4]
-- TYPE命令的返回結果是{'ok':'zset'}這樣子,這裏利用next作一輪迭代
local status, type = next(redis.call('TYPE', zset_key))
if status ~= nil and status == 'ok' then
    if type == 'zset' then
        local list = redis.call('ZREVRANGEBYSCORE', zset_key, max_score, min_score, 'LIMIT', offset, limit)
        if list ~= nil and #list > 0 then
            -- unpack函數能把table轉化爲可變參數
            redis.call('ZREM', zset_key, unpack(list))
            local result = redis.call('HMGET', hash_key, unpack(list))
            redis.call('HDEL', hash_key, unpack(list))
            return result
        end
    end
end
return nil
複製代碼

編寫核心API代碼:

// Jedis提供者
@Component
public class JedisProvider implements InitializingBean {

    private JedisPool jedisPool;

    @Override
    public void afterPropertiesSet() throws Exception {
        jedisPool = new JedisPool();
    }

    public Jedis provide(){
        return jedisPool.getResource();
    }
}

// OrderMessage
@Data
public class OrderMessage {

    private String orderId;
    private BigDecimal amount;
    private Long userId;
}

// 延遲隊列接口
public interface OrderDelayQueue {

    void enqueue(OrderMessage message);

    List<OrderMessage> dequeue(String min, String max, String offset, String limit);

    List<OrderMessage> dequeue();

    String enqueueSha();

    String dequeueSha();
}

// 延遲隊列實現類
@RequiredArgsConstructor
@Component
public class RedisOrderDelayQueue implements OrderDelayQueue, InitializingBean {

    private static final String MIN_SCORE = "0";
    private static final String OFFSET = "0";
    private static final String LIMIT = "10";
    private static final String ORDER_QUEUE = "ORDER_QUEUE";
    private static final String ORDER_DETAIL_QUEUE = "ORDER_DETAIL_QUEUE";
    private static final String ENQUEUE_LUA_SCRIPT_LOCATION = "/lua/enqueue.lua";
    private static final String DEQUEUE_LUA_SCRIPT_LOCATION = "/lua/dequeue.lua";
    private static final AtomicReference<String> ENQUEUE_LUA_SHA = new AtomicReference<>();
    private static final AtomicReference<String> DEQUEUE_LUA_SHA = new AtomicReference<>();
    private static final List<String> KEYS = Lists.newArrayList();

    private final JedisProvider jedisProvider;

    static {
        KEYS.add(ORDER_QUEUE);
        KEYS.add(ORDER_DETAIL_QUEUE);
    }

    @Override
    public void enqueue(OrderMessage message) {
        List<String> args = Lists.newArrayList();
        args.add(message.getOrderId());
        args.add(String.valueOf(System.currentTimeMillis()));
        args.add(message.getOrderId());
        args.add(JSON.toJSONString(message));
        try (Jedis jedis = jedisProvider.provide()) {
            jedis.evalsha(ENQUEUE_LUA_SHA.get(), KEYS, args);
        }
    }

    @Override
    public List<OrderMessage> dequeue() {
        // 30分鐘以前
        String maxScore = String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000);
        return dequeue(MIN_SCORE, maxScore, OFFSET, LIMIT);
    }

    @SuppressWarnings("unchecked")
    @Override
    public List<OrderMessage> dequeue(String min, String max, String offset, String limit) {
        List<String> args = new ArrayList<>();
        args.add(min);
        args.add(max);
        args.add(offset);
        args.add(limit);
        List<OrderMessage> result = Lists.newArrayList();
        try (Jedis jedis = jedisProvider.provide()) {
            List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(), KEYS, args);
            if (null != eval) {
                for (String e : eval) {
                    result.add(JSON.parseObject(e, OrderMessage.class));
                }
            }
        }
        return result;
    }

    @Override
    public String enqueueSha() {
        return ENQUEUE_LUA_SHA.get();
    }

    @Override
    public String dequeueSha() {
        return DEQUEUE_LUA_SHA.get();
    }

    @Override
    public void afterPropertiesSet() throws Exception {
        // 加載Lua腳本
        loadLuaScript();
    }

    private void loadLuaScript() throws Exception {
        try (Jedis jedis = jedisProvider.provide()) {
            ClassPathResource resource = new ClassPathResource(ENQUEUE_LUA_SCRIPT_LOCATION);
            String luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8);
            String sha = jedis.scriptLoad(luaContent);
            ENQUEUE_LUA_SHA.compareAndSet(null, sha);
            resource = new ClassPathResource(DEQUEUE_LUA_SCRIPT_LOCATION);
            luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8);
            sha = jedis.scriptLoad(luaContent);
            DEQUEUE_LUA_SHA.compareAndSet(null, sha);
        }
    }

    public static void main(String[] as) throws Exception {
        DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");
        JedisProvider jedisProvider = new JedisProvider();
        jedisProvider.afterPropertiesSet();
        RedisOrderDelayQueue queue = new RedisOrderDelayQueue(jedisProvider);
        queue.afterPropertiesSet();
        // 寫入測試數據
        OrderMessage message = new OrderMessage();
        message.setAmount(BigDecimal.valueOf(10086));
        message.setOrderId("ORDER_ID_10086");
        message.setUserId(10086L);
        message.setTimestamp(LocalDateTime.now().format(f));
        List<String> args = Lists.newArrayList();
        args.add(message.getOrderId());
        // 測試須要,score設置爲30分鐘以前
        args.add(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000));
        args.add(message.getOrderId());
        args.add(JSON.toJSONString(message));
        try (Jedis jedis = jedisProvider.provide()) {
            jedis.evalsha(ENQUEUE_LUA_SHA.get(), KEYS, args);
        }
        List<OrderMessage> dequeue = queue.dequeue();
        System.out.println(dequeue);
    }
}
複製代碼

這裏先執行一次main()方法驗證一下延遲隊列是否生效:

[OrderMessage(orderId=ORDER_ID_10086, amount=10086, userId=10086, timestamp=2019-08-21 08:32:22.885)]
複製代碼

肯定延遲隊列的代碼沒有問題,接着編寫一個QuartzJob類型的消費者OrderMessageConsumer

@DisallowConcurrentExecution
@Component
public class OrderMessageConsumer implements Job {

    private static final AtomicInteger COUNTER = new AtomicInteger();
    private static final ExecutorService BUSINESS_WORKER_POOL = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors(), r -> {
        Thread thread = new Thread(r);
        thread.setDaemon(true);
        thread.setName("OrderMessageConsumerWorker-" + COUNTER.getAndIncrement());
        return thread;
    });
    private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageConsumer.class);

    @Autowired
    private OrderDelayQueue orderDelayQueue;

    @Override
    public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {
        StopWatch stopWatch = new StopWatch();
        stopWatch.start();
        LOGGER.info("訂單消息處理定時任務開始執行......");
        List<OrderMessage> messages = orderDelayQueue.dequeue();
        if (!messages.isEmpty()) {
            // 簡單的列表等分放到線程池中執行
            List<List<OrderMessage>> partition = Lists.partition(messages, 2);
            int size = partition.size();
            final CountDownLatch latch = new CountDownLatch(size);
            for (List<OrderMessage> p : partition) {
                BUSINESS_WORKER_POOL.execute(new ConsumeTask(p, latch));
            }
            try {
                latch.await();
            } catch (InterruptedException ignore) {
                //ignore
            }
        }
        stopWatch.stop();
        LOGGER.info("訂單消息處理定時任務執行完畢,耗時:{} ms......", stopWatch.getTotalTimeMillis());
    }

    @RequiredArgsConstructor
    private static class ConsumeTask implements Runnable {

        private final List<OrderMessage> messages;
        private final CountDownLatch latch;

        @Override
        public void run() {
            try {
                // 實際上這裏應該單條捕獲異常
                for (OrderMessage message : messages) {
                    LOGGER.info("處理訂單信息,內容:{}", message);
                }
            } finally {
                latch.countDown();
            }
        }
    }
}      
複製代碼

上面的消費者設計的時候須要有如下考量:

  • 使用@DisallowConcurrentExecution註解不容許Job併發執行,其實多個Job併發執行意義不大,由於咱們採用的是短間隔的輪詢,而Redis是單線程處理命令,在客戶端作多線程其實效果不佳。
  • 線程池BUSINESS_WORKER_POOL的線程容量或者隊列應該綜合LIMIT值、等分訂單信息列表中使用的size值以及ConsumeTask裏面具體的執行時間進行考慮,這裏只是爲了方便使用了固定容量的線程池。
  • ConsumeTask中應該對每一條訂單信息的處理單獨捕獲異常和吞併異常,或者把處理單個訂單信息的邏輯封裝成一個不拋出異常的方法。

其餘Quartz相關的代碼:

// Quartz配置類
@Configuration
public class QuartzAutoConfiguration {

    @Bean
    public SchedulerFactoryBean schedulerFactoryBean(QuartzAutowiredJobFactory quartzAutowiredJobFactory) {
        SchedulerFactoryBean factory = new SchedulerFactoryBean();
        factory.setAutoStartup(true);
        factory.setJobFactory(quartzAutowiredJobFactory);
        return factory;
    }

    @Bean
    public QuartzAutowiredJobFactory quartzAutowiredJobFactory() {
        return new QuartzAutowiredJobFactory();
    }

    public static class QuartzAutowiredJobFactory extends AdaptableJobFactory implements BeanFactoryAware {

        private AutowireCapableBeanFactory autowireCapableBeanFactory;

        @Override
        public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
            this.autowireCapableBeanFactory = (AutowireCapableBeanFactory) beanFactory;
        }

        @Override
        protected Object createJobInstance(TriggerFiredBundle bundle) throws Exception {
            Object jobInstance = super.createJobInstance(bundle);
            // 這裏利用AutowireCapableBeanFactory重新建的Job實例作一次自動裝配,獲得一個原型(prototype)的JobBean實例
            autowireCapableBeanFactory.autowireBean(jobInstance);
            return jobInstance;
        }
    }
}
複製代碼

這裏暫時使用了內存態的RAMJobStore去存聽任務和觸發器的相關信息,若是在生產環境最好替換成基於MySQL也就是JobStoreTX進行集羣化,最後是啓動函數和CommandLineRunner的實現:

@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, TransactionAutoConfiguration.class})
public class Application implements CommandLineRunner {

    @Autowired
    private Scheduler scheduler;

    @Autowired
    private JedisProvider jedisProvider;

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }

    @Override
    public void run(String... args) throws Exception {
        // 準備一些測試數據
        prepareOrderMessageData();
        JobDetail job = JobBuilder.newJob(OrderMessageConsumer.class)
                .withIdentity("OrderMessageConsumer", "DelayTask")
                .build();
        // 觸發器5秒觸發一次
        Trigger trigger = TriggerBuilder.newTrigger()
                .withIdentity("OrderMessageConsumerTrigger", "DelayTask")
                .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(5).repeatForever())
                .build();
        scheduler.scheduleJob(job, trigger);
    }

    private void prepareOrderMessageData() throws Exception {
        DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");
        try (Jedis jedis = jedisProvider.provide()) {
            List<OrderMessage> messages = Lists.newArrayList();
            for (int i = 0; i < 100; i++) {
                OrderMessage message = new OrderMessage();
                message.setAmount(BigDecimal.valueOf(i));
                message.setOrderId("ORDER_ID_" + i);
                message.setUserId((long) i);
                message.setTimestamp(LocalDateTime.now().format(f));
                messages.add(message);
            }
            // 這裏暫時不使用Lua
            Map<String, Double> map = Maps.newHashMap();
            Map<String, String> hash = Maps.newHashMap();
            for (OrderMessage message : messages) {
                // 故意把score設計成30分鐘前
                map.put(message.getOrderId(), Double.valueOf(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000)));
                hash.put(message.getOrderId(), JSON.toJSONString(message));
            }
            jedis.zadd("ORDER_QUEUE", map);
            jedis.hmset("ORDER_DETAIL_QUEUE", hash);
        }
    }
}
複製代碼

輸出結果以下:

2019-08-21 22:45:59.518  INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務開始執行......
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_91, amount=91, userId=91, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_95, amount=95, userId=95, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_97, amount=97, userId=97, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_99, amount=99, userId=99, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_93, amount=93, userId=93, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_94, amount=94, userId=94, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_96, amount=96, userId=96, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_92, amount=92, userId=92, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_98, amount=98, userId=98, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_90, amount=90, userId=90, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.540  INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務執行完畢,耗時:22 ms......
2019-08-21 22:46:04.515  INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務開始執行......
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_89, amount=89, userId=89, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-6] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_87, amount=87, userId=87, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-7] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_85, amount=85, userId=85, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_88, amount=88, userId=88, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_83, amount=83, userId=83, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_81, amount=81, userId=81, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-6] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_86, amount=86, userId=86, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_82, amount=82, userId=82, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-7] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_84, amount=84, userId=84, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_80, amount=80, userId=80, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務執行完畢,耗時:1 ms......
......
複製代碼

首次執行的時候涉及到一些組件的初始化,會比較慢,後面看到因爲咱們只是簡單打印訂單信息,因此定時任務執行比較快。若是在不調整當前架構的狀況下,生產中須要注意:

  • 切換JobStoreJDBC模式,Quartz官方有完整教程,或者看筆者以前翻譯的Quartz文檔。
  • 須要監控或者收集任務的執行狀態,添加預警等等。

這裏其實有一個性能隱患,命令ZREVRANGEBYSCORE的時間複雜度能夠視爲爲O(N)N是集合的元素個數,因爲這裏把全部的訂單信息都放進了同一個Sorted Set(ORDER_QUEUE)中,因此在一直有新增數據的時候,dequeue腳本的時間複雜度一直比較高,後續訂單量升高以後會此處必定會成爲性能瓶頸,後面會給出解決的方案。

小結

這篇文章主要從一個實際生產案例的仿真例子入手,分析了當前延時任務的一些實現方案,還基於RedisQuartz給出了一個完整的示例。當前的示例只是處於可運行的狀態,有些問題還沒有解決。下一篇文章會着眼於解決兩個方面的問題:

  1. 分片。
  2. 監控。

還有一點,架構是基於業務形態演進出來的,不少東西須要結合場景進行方案設計和改進,思路僅供參考,切勿照搬代碼

附件

(本文完 c-5-d e-a-20190821 順便開通了RSS插件,見主頁的圖標,歡迎訂閱 r-a-20190904)

技術公衆號(《Throwable文摘》),不按期推送筆者原創技術文章(毫不抄襲或者轉載):

相關文章
相關標籤/搜索