二叉樹是咱們在程序中用的最多的一種樹(我的觀點)。最簡單的一個二叉樹是由一個根節點,兩個子節點(一左一右成左右孩子節點)組成。二叉樹是數組和鏈表的結合,即包含了數組的快速查找優勢,又包含了鏈表的快速添加刪除的優勢。熟練掌握二叉樹的遍歷方法是頗有必要的。下面來介紹一下基於二叉樹的四種遍歷方式。java
下面咱們以一個棵簡單的二叉樹爲例來講明四種遍歷:node
建立樹節點類:數組
//樹節點 class TreeNode { public char val; public TreeNode left; public TreeNode right; public TreeNode(char x) { val = x; } }
中序遍歷:函數
先遍歷左孩子節點---根節點---右孩子節點工具
//中序遍歷 左-根-右 (前中後:根的位置) public void InOrder(TreeNode current){ if(current != null) { InOrder(current.left); Visit(current); InOrder(current.right); } }
前序遍歷:測試
遍歷根節點---左孩子節點---右孩子節點spa
//前序遍歷 根-左-右 public void PreOrder(TreeNode current){ if(current != null) { Visit(current); InOrder(current.left); InOrder(current.right); } }
後序遍歷:3d
遍歷左孩子節點---右孩子節點---根節點code
//後續遍歷 左-右-根 public void PostOrder(TreeNode current){ if(current != null) { InOrder(current.left); InOrder(current.right); Visit(current); } }
層序遍歷:blog
同一層節點從左往右依次遍歷。
//層序遍歷 同一層節點從左往右依次遍歷 FIFO public void LevelOrder(TreeNode current){ List<TreeNode> q = new ArrayList<TreeNode>(); while(current != null) { Visit(current); if(current.left != null) { q.add(current.left); } if(current.right != null) { q.add(current.right); } if(q.isEmpty()) return ; current = q.remove(0); } }
以上就是四種基本遍歷方式。下面咱們來測試一下,首先寫一個工具函數,用來顯示當前節點的值。
//*********輔助工具**************** public void Visit(TreeNode node) { System.out.print(node.val); }
寫Test測試函數:
@Test public void fun() { TreeNode root = new TreeNode('+'); root.left = new TreeNode('-'); root.right = new TreeNode('E'); root.left.left = new TreeNode('*'); root.left.right = new TreeNode('D'); root.left.left.left = new TreeNode('/'); root.left.left.right = new TreeNode('C'); root.left.left.left.left = new TreeNode('A'); root.left.left.left.right = new TreeNode('B'); System.out.println("中序遍歷:"); InOrder(root); System.out.println(); System.out.println("前序遍歷:"); PreOrder(root); System.out.println(); System.out.println("後序遍歷:"); PostOrder(root); System.out.println(); System.out.println("層序遍歷:"); LevelOrder(root); System.out.println(); }
由上面的測試函數獲得遍歷結果:
所有代碼:
package tree; import java.util.ArrayList; import java.util.List; import org.junit.Test; /** * 二叉數的遍歷 * + * - E * * D * / C * A B * @author Ranter * */ public class BinaryTree { @Test public void fun() { TreeNode root = new TreeNode('+'); root.left = new TreeNode('-'); root.right = new TreeNode('E'); root.left.left = new TreeNode('*'); root.left.right = new TreeNode('D'); root.left.left.left = new TreeNode('/'); root.left.left.right = new TreeNode('C'); root.left.left.left.left = new TreeNode('A'); root.left.left.left.right = new TreeNode('B'); System.out.println("中序遍歷:"); InOrder(root); System.out.println(); System.out.println("前序遍歷:"); PreOrder(root); System.out.println(); System.out.println("後序遍歷:"); PostOrder(root); System.out.println(); System.out.println("層序遍歷:"); LevelOrder(root); System.out.println(); } //**************************************************************** //中序遍歷 左-根-右 (前中後:根的位置) public void InOrder(TreeNode current){ if(current != null) { InOrder(current.left); Visit(current); InOrder(current.right); } } //前序遍歷 根-左-右 public void PreOrder(TreeNode current){ if(current != null) { Visit(current); InOrder(current.left); InOrder(current.right); } } //後續遍歷 左-右-根 public void PostOrder(TreeNode current){ if(current != null) { InOrder(current.left); InOrder(current.right); Visit(current); } } //層序遍歷 同一層節點從左往右依次遍歷(使用隊列層序遍歷) public void LevelOrder(TreeNode current){ List<TreeNode> q = new ArrayList<TreeNode>(); while(current != null) { Visit(current); if(current.left != null) { q.add(current.left); } if(current.right != null) { q.add(current.right); } if(q.isEmpty()) return ; current = q.remove(0); } } //*********輔助工具**************** public void Visit(TreeNode node) { System.out.print(node.val); } //樹節點 class TreeNode { public char val; public TreeNode left; public TreeNode right; public TreeNode(char x) { val = x; } } }