matplotlib 爲python下的一個可視化庫,它提供了很好的二維甚至三維的圖形展現接口。以下是matplotlib的一些基本數據實現方式python
import matplotlib.pyplot as plt
import numpy as np
higth = [168,178,173,165] weight = [51,64,61,57]
# 散點圖繪製 plt.scatter(higth, weight)
# 隨機生成數據 number = 1000 x = np.random.randn(number) y = np.random.randn(number)
# 生成離散點圖 plt.scatter(x, y)
# 正相關模型 y += x
plt.scatter(x,y)
# 生成負相關線性模型 plt.scatter(-x,y,s = 10)
x, y : array_like, shape (n, )The data positions.app
s : scalar or array_like, shape (n, ), optionalThe marker size in points**2.Default is rcParams['lines.markersize'] ** 2
.dom
c : color, sequence, or sequence of color, optional, default: 'b'The marker color. Possible values:ide
A single color format string.ui
A sequence of color specifications of length n.this
A sequence of n numbers to be mapped to colors using cmap andnorm.spa
A 2-D array in which the rows are RGB or RGBA.scala
Note that c should not be a single numeric RGB or RGBA sequencebecause that is indistinguishable from an array of values to becolormapped. If you want to specify the same RGB or RGBA value forall points, use a 2-D array with a single row.code
marker : ~matplotlib.markers.MarkerStyle
, optional, default: 'o'The marker style. marker can be either an instance of the classor the text shorthand for a particular marker.See ~matplotlib.markers
for more information marker styles.orm
cmap : ~matplotlib.colors.Colormap
, optional, default: NoneA .Colormap
instance or registered colormap name. cmap is onlyused if c is an array of floats. If None
, defaults to rcimage.cmap
.
norm : ~matplotlib.colors.Normalize
, optional, default: NoneA .Normalize
instance is used to scale luminance data to 0, 1.norm is only used if c is an array of floats. If None, usethe default .colors.Normalize
.
vmin, vmax : scalar, optional, default: Nonevmin and vmax are used in conjunction with norm to normalizeluminance data. If None, the respective min and max of the colorarray is used. vmin and vmax are ignored if you pass a norminstance.
alpha : scalar, optional, default: NoneThe alpha blending value, between 0 (transparent) and 1 (opaque).
linewidths : scalar or array_like, optional, default: NoneThe linewidth of the marker edges. Note: The default edgecolorsis 'face'. You may want to change this as well.If None, defaults to rcParams lines.linewidth
.
verts : sequence of (x, y), optionalIf marker is None, these vertices will be used to constructthe marker. The center of the marker is located at (0, 0) innormalized units. The overall marker is rescaled by s.
edgecolors : color or sequence of color, optional, default: 'face'The edge color of the marker. Possible values:
'face': The edge color will always be the same as the face color.
'none': No patch boundary will be drawn.
A matplotib color.
For non-filled markers, the edgecolors kwarg is ignored andforced to 'face' internally.
import matplotlib.dates as mdates
# 讀取數據,data:日期,open:開盤價格,收盤價格, # 其中日期須要格式化爲 float 類型 data,open,close = np.loadtxt('../dataset/money.csv', delimiter=',', converters={0:mdates.strpdate2num('%Y/%m/%d')}, encoding='utf-8', usecols=(0,1,3),unpack=True)
# plot_date(data,open) 默認爲散點圖, # 可自動識別float 類型的 data數據,並把它轉換爲日期 plt.plot_date(data[::8],open[::8],'-',color='r',marker = 'o',markersize = '0.5')
import matplotlib.pyplot as plt import numpy as np
N = 5 y = [20,10,30,25,13] index = np.arange(N)
plt.bar(left= index,height = y,color = 'red',width = 0.5,)
# The silces will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' # 定義標籤 # 每一塊的比例 sizes = [15,30,45,10] # 指定顏色 colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] # 突出顯示,這裏僅顯示第二塊 explode = (0, 0.1, 0, 0) plt.pie(sizes, explode = explode, labels = labels, colors = colors, autopct = '%1.1f%%', shadow = True, startangle = 90) plt.axis('equal') # 顯示爲園(避免比列壓縮爲橢圓) plt.show()
x : array-like
The wedge sizes.
explode : array-like, optional, default: None
If not None, is a len(x)
array which specifies the fractionof the radius with which to offset each wedge.
labels : list, optional, default: None
A sequence of strings providing the labels for each wedge
colors : array-like, optional, default: None
A sequence of matplotlib color args through which the pie chartwill cycle. If None, will use the colors in the currentlyactive cycle.
autopct : None (default), string, or function, optional
If not None, is a string or function used to label the wedgeswith their numeric value. The label will be placed inside thewedge. If it is a format string, the label will be fmt%pct
.If it is a function, it will be called.
pctdistance : float, optional, default: 0.6
The ratio between the center of each pie slice and the start ofthe text generated by autopct. Ignored if autopct is None.
shadow : bool, optional, default: False
Draw a shadow beneath the pie.
labeldistance : float, optional, default: 1.1
The radial distance at which the pie labels are drawn
startangle : float, optional, default: None
If not None, rotates the start of the pie chart by angledegrees counterclockwise from the x-axis.
radius : float, optional, default: None
The radius of the pie, if radius is None it will be set to 1.
counterclock : bool, optional, default: True
Specify fractions direction, clockwise or counterclockwise.
wedgeprops : dict, optional, default: None
Dict of arguments passed to the wedge objects making the pie.
For example, you can pass in wedgeprops = {'linewidth': 3}
to set the width of the wedge border lines equal to 3.
For more details, look at the doc/arguments of the wedge object.By default clip_on=False
.
textprops : dict, optional, default: None
Dict of arguments to pass to the text objects.
center : list of float, optional, default: (0, 0)
Center position of the chart. Takes value (0, 0) or is a sequenceof 2 scalars.
frame : bool, optional, default: False
Plot axes frame with the chart if true.
rotatelabels : bool, optional, default: False
Rotate each label to the angle of the corresponding slice if true.