loj#6041. 「雅禮集訓 2017 Day7」事情的類似度(SAM set啓發式合併 二維數點)

題意

題目連接c++

Sol

只會後綴數組+暴躁莫隊套set\(n \sqrt{n} \log n\)但絕對跑不過去。數組

正解是SAM + set啓發式合併 + 二維數點/ SAM + LCTui

可是我只會第一種qwqspa

首先一個性質是兩個前綴的最長公共後綴就是他們再parent樹上的LCA的lendebug

那麼咱們考慮每一個LCA的貢獻。code

把詢問離線下來按右端點排序,對於當前點的子樹中的點有一個顯然的性質。排序

若存在四個點\(l, x, y, r\)知足\(l < x < y < r\),那麼顯然\(l, r\)這對點是沒有意義的(由於每對點產生的貢獻都相同)。也就說咱們在處理子樹的時候實際上有一堆點對用不到。咱們能夠經過set啓發式合併來合併子樹,也就是說我如今有一堆點集,而後我考慮加入一個新點以後哪些點對會有用,顯然只有它與它的前驅/後繼這兩個點對是有用的。get

由於合併的時候是啓發式合併,因此總複雜度不會超過\(n \log^2 n\)it

而後處理完以後就是一個二維數點取max問題了。class

調起來有點自閉qwq

#include<bits/stdc++.h> 
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define pb push_back 
//#define int long long 
#define LL long long 
#define ull unsigned long long 
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, ans[MAXN];
char s[MAXN];
vector<Pair> Q[MAXN], P[MAXN];
vector<int> v[MAXN];
set<int> st[MAXN];
int ch[MAXN][2], len[MAXN], fa[MAXN], las = 1, root = 1, tot = 1;
void insert(int x, int id) {
    int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1; 
    st[now].insert(id);

    for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
    if(!pre) fa[now] = root;
    else {
        int q = ch[pre][x];
        if(len[q] == len[pre] + 1) fa[now] = q;
        else {
            int nq = ++tot; 
            fa[nq] = fa[q]; len[nq] = len[pre] + 1; 
            memcpy(ch[nq], ch[q], sizeof(ch[q]));
            for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
            fa[now] = fa[q] = nq;
        }
    }
}
void dfs(int x) {
    set<int> &S = st[x]; 
    for(auto &to : v[x]) {
        dfs(to);
    
        set<int> &Sto = st[to];
        if(Sto.size() > S.size()) swap(Sto, S);
        for(auto &nxt: Sto) {
            auto pos = S.insert(nxt).fi;
            if(pos != S.begin()) {
                auto pre = --pos; pos++;
            //  printf("%d %d %d\n", *pos, *pre, len[x]);
                P[*pos].pb({*pre, len[x]});
            }
            if((++pos) != S.end()) {
                pos--;
                auto nxt = ++pos; pos--;
                //printf("%d %d\n", *pos, *nxt);
                P[*nxt].pb({*pos, len[x]});
            }
            S.erase(nxt);
        }
        for(auto &nxt: Sto) S.insert(nxt);
    }
}
void Build() {
    for(int i = 1; i <= tot; i++) v[fa[i]].push_back(i);
    dfs(1);
    for(int i = 1; i <= N; i++) sort(Q[i].begin(), Q[i].end()), sort(P[i].begin(), P[i].end());
}
int mx[MAXN];
#define lb(x) (x & (-x))
void Add(int x, int val) {
    x = N - x + 1;
    while(x <= N) chmax(mx[x], val), x += lb(x);
}
int Query(int x) {
    x = N - x + 1;
    int ans = 0;
    while(x) chmax(ans, mx[x]), x -= lb(x);
    return ans;
}
void solve() {
    for(int i = 1; i <= N; i++) {
        int cur = Q[i].size() - 1;
        for(int j = P[i].size() - 1; j >= 0; j--) {
            while((~cur) && Q[i][cur].fi > P[i][j].fi) ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--;
            Add(P[i][j].fi, P[i][j].se);
        }
        while(~cur) 
            ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--;
        
    }
}
signed main() {
    //freopen("a.in", "r", stdin);
    N = read(); M = read();
    scanf("%s", s + 1);
    for(int i = 1; i <= N; i++) insert(s[i] - '0', i);
    for(int i = 1; i <= M; i++) {
        int l = read(), r = read();
        Q[r].pb({l, i});
    }
    Build();
    solve();
    for(int i = 1; i <= M; i++) cout << ans[i] << '\n';
    return 0;
}
相關文章
相關標籤/搜索