很少說,直接上乾貨!php
本篇博客的目地,是對工做學習過程當中所遇所見的一些有關深度學習、機器學習的優質資源,做分類彙總,方便本身查閱,也方便他人學習借用。html
主要會涉及一些優質的理論書籍和論文、一些實惠好用的工具庫和開源庫、一些供入門該理論入門所用的demo等等。java
因爲本博客將不按期更新,儘可能將較爲前沿的深度學習、機器學習內容整理下來,須要轉載的同窗儘可能附上本文的連接,方便得到最新的內容。python
Method | VOC2007 | VOC2010 | VOC2012 | ILSVRC 2013 | MSCOCO 2015 | Speed |
---|---|---|---|---|---|---|
OverFeat | 24.3% | |||||
R-CNN (AlexNet) | 58.5% | 53.7% | 53.3% | 31.4% | ||
R-CNN (VGG16) | 66.0% | |||||
SPP_net(ZF-5) | 54.2%(1-model), 60.9%(2-model) | 31.84%(1-model), 35.11%(6-model) | ||||
DeepID-Net | 64.1% | 50.3% | ||||
NoC | 73.3% | 68.8% | ||||
Fast-RCNN (VGG16) | 70.0% | 68.8% | 68.4% | 19.7%(@[0.5-0.95]), 35.9%(@0.5) | ||
MR-CNN | 78.2% | 73.9% | ||||
Faster-RCNN (VGG16) | 78.8% | 75.9% | 21.9%(@[0.5-0.95]), 42.7%(@0.5) | 198ms | ||
Faster-RCNN (ResNet-101) | 85.6% | 83.8% | 37.4%(@[0.5-0.95]), 59.0%(@0.5) | |||
SSD300 (VGG16) | 77.2% | 75.8% | 25.1%(@[0.5-0.95]), 43.1%(@0.5) | 46 fps | ||
SSD512 (VGG16) | 79.8% | 78.5% | 28.8%(@[0.5-0.95]), 48.5%(@0.5) | 19 fps | ||
ION | 79.2% | 76.4% | ||||
CRAFT | 75.7% | 71.3% | 48.5% | |||
OHEM | 78.9% | 76.3% | 25.5%(@[0.5-0.95]), 45.9%(@0.5) | |||
R-FCN (ResNet-50) | 77.4% | 0.12sec(K40), 0.09sec(TitianX) | ||||
R-FCN (ResNet-101) | 79.5% | 0.17sec(K40), 0.12sec(TitianX) | ||||
R-FCN (ResNet-101),multi sc train | 83.6% | 82.0% | 31.5%(@[0.5-0.95]), 53.2%(@0.5) | |||
PVANet 9.0 | 89.8% | 84.2% | 750ms(CPU), 46ms(TitianX) |
Detection Results: VOC2012linux
Deep Neural Networks for Object Detectionandroid
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networksgit
Rich feature hierarchies for accurate object detection and semantic segmentation程序員
Scalable Object Detection using Deep Neural Networksgithub
Scalable, High-Quality Object Detectionweb
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
Object Detectors Emerge in Deep Scene CNNs
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
Object Detection Networks on Convolutional Feature Maps
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
Fast R-CNN
DeepBox: Learning Objectness with Convolutional Networks
Object detection via a multi-region & semantic segmentation-aware CNN model
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN in MXNet with distributed implementation and data parallelization
Contextual Priming and Feedback for Faster R-CNN
An Implementation of Faster RCNN with Study for Region Sampling
You Only Look Once: Unified, Real-Time Object Detection
darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++
Start Training YOLO with Our Own Data
R-CNN minus R
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
DenseBox: Unifying Landmark Localization with End to End Object Detection
SSD: Single Shot MultiBox Detector
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
Adaptive Object Detection Using Adjacency and Zoom Prediction
G-CNN: an Iterative Grid Based Object Detector
Factors in Finetuning Deep Model for object detection
Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution
We don’t need no bounding-boxes: Training object class detectors using only human verification
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
A MultiPath Network for Object Detection
CRAFT Objects from Images
Training Region-based Object Detectors with Online Hard Example Mining
Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection
Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers
R-FCN: Object Detection via Region-based Fully Convolutional Networks
Weakly supervised object detection using pseudo-strong labels
Recycle deep features for better object detection
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
Multi-stage Object Detection with Group Recursive Learning
Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
Gated Bi-directional CNN for Object Detection
Crafting GBD-Net for Object Detection
StuffNet: Using ‘Stuff’ to Improve Object Detection
Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene
Hierarchical Object Detection with Deep Reinforcement Learning
Learning to detect and localize many objects from few examples
Speed/accuracy trade-offs for modern convolutional object detectors
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
Feature Pyramid Networks for Object Detection
Action-Driven Object Detection with Top-Down Visual Attentions
Beyond Skip Connections: Top-Down Modulation for Object Detection
YOLO9000: Better, Faster, Stronger
Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2
DSSD : Deconvolutional Single Shot Detector
Wide-Residual-Inception Networks for Real-time Object Detection
Attentional Network for Visual Object Detection
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling
https://arxiv.org/abs/1703.10295
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries
Spatial Memory for Context Reasoning in Object Detection
Improving Object Detection With One Line of Code
Accurate Single Stage Detector Using Recurrent Rolling Convolution
Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection
https://arxiv.org/abs/1704.05775
Learning Object Class Detectors from Weakly Annotated Video
Analysing domain shift factors between videos and images for object detection
Video Object Recognition
Deep Learning for Saliency Prediction in Natural Video
T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
Object Detection from Video Tubelets with Convolutional Neural Networks
Object Detection in Videos with Tubelets and Multi-context Cues
Context Matters: Refining Object Detection in Video with Recurrent Neural Networks
CNN Based Object Detection in Large Video Images
Object Detection in Videos with Tubelet Proposal Networks
Flow-Guided Feature Aggregation for Video Object Detection
Video Object Detection using Faster R-CNN
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
Differential Geometry Boosts Convolutional Neural Networks for Object Detection
A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation
https://arxiv.org/abs/1703.03347
This task involves predicting the salient regions of an image given by human eye fixations.
Best Deep Saliency Detection Models (CVPR 2016 & 2015)
http://i.cs.hku.hk/~yzyu/vision.html
Large-scale optimization of hierarchical features for saliency prediction in natural images
Predicting Eye Fixations using Convolutional Neural Networks
Saliency Detection by Multi-Context Deep Learning
DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection
SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
Shallow and Deep Convolutional Networks for Saliency Prediction
Recurrent Attentional Networks for Saliency Detection
Two-Stream Convolutional Networks for Dynamic Saliency Prediction
Unconstrained Salient Object Detection
Unconstrained Salient Object Detection via Proposal Subset Optimization
DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection
Salient Object Subitizing
Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection
Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs
Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection
A Deep Multi-Level Network for Saliency Prediction
Visual Saliency Detection Based on Multiscale Deep CNN Features
A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
Deeply supervised salient object detection with short connections
Weakly Supervised Top-down Salient Object Detection
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
Visual Saliency Prediction Using a Mixture of Deep Neural Networks
A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network
Saliency Detection by Forward and Backward Cues in Deep-CNNs
https://arxiv.org/abs/1703.00152
Supervised Adversarial Networks for Image Saliency Detection
https://arxiv.org/abs/1704.07242
Deep Learning For Video Saliency Detection
Visual Relationship Detection with Language Priors
ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection
Visual Translation Embedding Network for Visual Relation Detection
Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection
Detecting Visual Relationships with Deep Relational Networks
Multi-view Face Detection Using Deep Convolutional Neural Networks
From Facial Parts Responses to Face Detection: A Deep Learning Approach
Compact Convolutional Neural Network Cascade for Face Detection
Face Detection with End-to-End Integration of a ConvNet and a 3D Model
CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection
Finding Tiny Faces
Towards a Deep Learning Framework for Unconstrained Face Detection
Supervised Transformer Network for Efficient Face Detection
UnitBox: An Advanced Object Detection Network
Bootstrapping Face Detection with Hard Negative Examples
Grid Loss: Detecting Occluded Faces
A Multi-Scale Cascade Fully Convolutional Network Face Detector
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
Face Detection using Deep Learning: An Improved Faster RCNN Approach
Faceness-Net: Face Detection through Deep Facial Part Responses
Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained 「Hard Faces」
End-To-End Face Detection and Recognition
https://arxiv.org/abs/1703.10818
Deep Convolutional Network Cascade for Facial Point Detection
Facial Landmark Detection by Deep Multi-task Learning
A Recurrent Encoder-Decoder Network for Sequential Face Alignment
Detecting facial landmarks in the video based on a hybrid framework
Deep Constrained Local Models for Facial Landmark Detection
Effective face landmark localization via single deep network
A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection
https://arxiv.org/abs/1704.01880
End-to-end people detection in crowded scenes
Detecting People in Artwork with CNNs
Deep Multi-camera People Detection
Context-aware CNNs for person head detection
Pedestrian Detection aided by Deep Learning Semantic Tasks
Deep Learning Strong Parts for Pedestrian Detection
Deep convolutional neural networks for pedestrian detection
Scale-aware Fast R-CNN for Pedestrian Detection
New algorithm improves speed and accuracy of pedestrian detection
Pushing the Limits of Deep CNNs for Pedestrian Detection
A Real-Time Deep Learning Pedestrian Detector for Robot Navigation
A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation
Is Faster R-CNN Doing Well for Pedestrian Detection?
Reduced Memory Region Based Deep Convolutional Neural Network Detection
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
Multispectral Deep Neural Networks for Pedestrian Detection
Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters
DAVE: A Unified Framework for Fast Vehicle Detection and Annotation
Evolving Boxes for fast Vehicle Detection
Traffic-Sign Detection and Classification in the Wild
Holistically-Nested Edge Detection
Unsupervised Learning of Edges
Pushing the Boundaries of Boundary Detection using Deep Learning
Convolutional Oriented Boundaries
Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks
Richer Convolutional Features for Edge Detection
Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs
DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images
SRN: Side-output Residual Network for Object Symmetry Detection in the Wild
Deep Fruit Detection in Orchards
Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
Objects as context for part detection
https://arxiv.org/abs/1703.09529
Deep Deformation Network for Object Landmark Localization
Fashion Landmark Detection in the Wild
Deep Learning for Fast and Accurate Fashion Item Detection
OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as 「OSM-Crosswalk-Detection」)
Selfie Detection by Synergy-Constraint Based Convolutional Neural Network
Associative Embedding:End-to-End Learning for Joint Detection and Grouping
Deep Cuboid Detection: Beyond 2D Bounding Boxes
Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
Deep Learning Logo Detection with Data Expansion by Synthesising Context
Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks
Automatic Handgun Detection Alarm in Videos Using Deep Learning
DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
Scale-aware Pixel-wise Object Proposal Networks
Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
Learning to Segment Object Proposals via Recursive Neural Networks
Learning Detection with Diverse Proposals
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
Improving Small Object Proposals for Company Logo Detection
Beyond Bounding Boxes: Precise Localization of Objects in Images
Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
Weakly Supervised Object Localization Using Size Estimates
Active Object Localization with Deep Reinforcement Learning
Localizing objects using referring expressions
LocNet: Improving Localization Accuracy for Object Detection
Learning Deep Features for Discriminative Localization
ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
Towards Good Practices for Recognition & Detection
TensorBox: a simple framework for training neural networks to detect objects in images
Object detection in torch: Implementation of some object detection frameworks in torch
Using DIGITS to train an Object Detection network
FCN-MultiBox Detector
KittiBox: A car detection model implemented in Tensorflow.
BeaverDam: Video annotation tool for deep learning training labels
https://github.com/antingshen/BeaverDam
Convolutional Neural Networks for Object Detection
http://rnd.azoft.com/convolutional-neural-networks-object-detection/
Introducing automatic object detection to visual search (Pinterest)
Deep Learning for Object Detection with DIGITS
Analyzing The Papers Behind Facebook’s Computer Vision Approach
Easily Create High Quality Object Detectors with Deep Learning
How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
Object Detection in Satellite Imagery, a Low Overhead Approach
You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
Faster R-CNN Pedestrian and Car Detection
Small U-Net for vehicle detection
Region of interest pooling explained
Deep Learning(深度學習):
ufldl的2個教程(這個沒得說,入門絕對的好教程,Ng的,邏輯清晰有練習):一
ufldl的2個教程(這個沒得說,入門絕對的好教程,Ng的,邏輯清晰有練習):二
Bengio團隊的deep learning教程,用的theano庫,主要是rbm系列,搞python的能夠參考,很不錯。
deeplearning.net主頁,裏面包含的信息量很是多,有software, reading list, research lab, dataset, demo等,強烈推薦,本身去發現好資料。
Deep learning的toolbox,matlab實現的,對應源碼來學習一些常見的DL模型頗有幫助,這個庫我主要是用來學習算法實現過程的。
2013年龍星計劃深度學習教程,鄧力大牛主講,雖然老師準備得不充分,不過仍是頗有收穫的。
Hinton大牛在coursera上開的神經網絡課程,DL部分有很多,很是贊,沒有廢話,課件每句話都包含了不少信息,有必定DL基礎後去聽收穫更大。
Larochelle關於DL的課件,邏輯清晰,覆蓋面廣,包含了rbm系列,autoencoder系列,sparse coding系列,還有crf,cnn,rnn等。雖然網頁是法文,可是課件是英文。
CMU大學2013年的deep learning課程,有很多reading paper能夠參考。
達慕思大學Lorenzo Torresani的2013Deep learning課程reading list.
Deep Learning Methods for Vision(餘凱等在cvpr2012上組織一個workshop,關於DL在視覺上的應用)。
斯坦福Ng團隊成員連接主頁,能夠進入團隊成員的主頁,比較熟悉的有Richard Socher, Honglak Lee, Quoc Le等。
多倫多ML團隊成員連接主頁,能夠進入團隊成員主頁,包括DL鼻祖hinton,還有Ruslan Salakhutdinov , Alex Krizhevsky等。
蒙特利爾大學機器學習團隊成員連接主頁,包括大牛Bengio,還有Ian Goodfellow 等。
紐約大學的機器學習團隊成員連接主頁,包括大牛Lecun,還有Rob Fergus等。
豆瓣上的腦與deep learning讀書會,有講義和部分視頻,主要介紹了一些於deep learning相關的生物神經網絡。
Large Scale ML的課程,由Lecun和Langford講的,能不推薦麼。
Yann Lecun的2014年Deep Learning課程主頁。 視頻連接。
一些常見的DL code列表,csdn博主zouxy09的博文,Deep Learning源代碼收集-持續更新…
Deep Learning for NLP (without Magic),由DL界5大高手之一的Richard Socher小組搞的,他主要是NLP的。
2012 Graduate Summer School: Deep Learning, Feature Learning,高手雲集,深度學習盛宴,幾乎全部的DL大牛都有參加。
matlab下的maxPooling速度優化,調用C++實現的。
2014年ACL機器學習領域主席Kevin Duh的深度學習入門講座視頻。
R-CNN code: Regions with Convolutional Neural Network Features.
Machine Learning(機器學習):
介紹圖模型的一個ppt,很是的贊,ppt做者總結得很給力,裏面還包括了HMM,MEM, CRF等其它圖模型。反正看完挺有收穫的。
機器學習一個視頻教程,youtube上的,翻吧,內容很全面,偏機率統計模型,每一小集只有幾分鐘。
demonstrate 的 blog :關於PGM(機率圖模型)系列,主要按照Daphne Koller的經典PGM教程介紹的,你們依次google之。
Tom Mitchell大牛的機器學習課程,他的machine learning教科書很是出名。
CS109,Data Science,用python介紹機器學習算法的課程。
國外技術團隊博客:
Computer Vision(計算機視覺):
MIT2013年秋季課程:Advances in Computer Vision,有練習題,有些有code.
OpenCV相關:
2012年7月4日隨着opencv2.4.2版本的發佈,opencv更改了其最新的官方網站地址。
好像12年纔有這個論壇的,比較新。裏面有針對《learning opencv》這本書的視頻講解,不過視頻教學還沒出完,正在更新中。對剛入門學習opencv的人來講很不錯。
http://www.opencv.org.cn/forum/
opencv中文論壇,對於初次接觸opencv的學者來講比較不錯,入門資料多,opencv的各類英文文檔也翻譯成中文了。不足是感受這個論壇上發帖提問不多人回答,也就是說討論不夠激烈。
opencv的日文網站,裏面有很多例子代碼,看不懂日文能夠用網站自帶的翻譯,能看個大概。
http://code.opencv.org/projects/opencv
opencv版本bug修補,版本更新,以及各類相關大型活動安排,還包含了opencv最近幾個月內的活動路線,即將來將增長的功能等,能夠掌握各類關於opencv進展狀況的最新進展。
http://tech.groups.yahoo.com/group/OpenCV/
opencv雅虎郵件列表,聽說是最好的opencv論壇,信息更新最新的地方。不過我的認爲要查找相關主題的內容,在郵件列表中很是不方便。
http://www.cmlab.csie.ntu.edu.tw/~jsyeh/wiki/doku.php
臺灣大學暑假集訓網站,內有連接到與opencv集訓相關的網頁。感受這種教育形式還蠻不錯的。
http://sourceforge.net/projects/opencvlibrary/
opencv版本發佈地方。
http://code.opencv.org/projects/opencv/wiki/ChangeLog#241 http://opencv.willowgarage.com/wiki/OpenCV%20Change%20Logs
opencv版本內容更改日誌網頁,前面那個網頁更新最快。
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/tutorials.html
opencv中文教程網頁,分幾個模塊講解,有代碼有過程。內容是網友翻譯opencv自帶的doc文件裏的。
https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
網友總結的經常使用帶有cvpr領域常見算法code連接的網址,感受很是的不錯。
http://fossies.org/dox/OpenCV-2.4.2/
該網站能夠查看opencv中一些函數的變量接口,還會列出函數之間的結構圖。
opencv的函數、類等查找網頁,有導航,查起來感受不錯。
優化:
Geoff Gordon的優化課程,youtube上有對應視頻。
數學:
http://www.youku.com/playlist_show/id_19465801.html
《計算機中的數學》系列視頻,8位老師10講內容,生動介紹微積分和線性代數基本概念在計算機學科中的各類有趣應用!
Linux學習資料:
linux入門的基礎視頻教程,對於新手可選擇看第一部分,視頻來源於LinuxCast.net網站,還不錯。
OpenNI+Kinect相關:
http://1.yuhuazou.sinaapp.com/
網友晨宇思遠的博客,主攻cvpr,ai等。
http://blog.csdn.net/chenli2010/article/details/6887646
kinect和openni學習資料彙總。
http://blog.csdn.net/moc062066/article/category/871261
OpenCV 計算機視覺 kinect的博客:
http://kheresy.wordpress.com/index_of_openni_and_kinect/comment-page-5/
網友Heresy的博客,裏面有很多kinect的文章,寫的比較詳細。
體感遊戲中文網,有很多新的kinect資訊。
Kinect體感開發網。
http://code.google.com/p/openni-hand-tracker
openni_hand_tracking google code項目。
網友的kinect博客,裏面有不少手勢識別方面的文章介紹,還有源碼,不過貌似是基於c#的。
https://sites.google.com/site/colordepthfusion/
一些關於深度信息和顏色信息融合(fusion)的文章。
http://projects.ict.usc.edu/mxr/faast/
kinect新的庫,能夠結合OpenNI使用。
https://sites.google.com/a/chalearn.org/gesturechallenge/
kinect手勢識別網站。
http://www.ros.org/wiki/mit-ros-pkg
mit的kinect項目,有code。主要是與手勢識別相關。
http://www.thoughtden.co.uk/blog/2012/08/kinecting-people-our-top-6-kinect-projects/
kinect 2012年度最具創新的6個項目,有視頻,確實夠創新的!
http://www.cnblogs.com/yangyangcv/archive/2011/01/07/1930349.html
kinect多點觸控的一篇博文。
http://sourceforge.net/projects/kinect-mex/
http://www.mathworks.com/matlabcentral/fileexchange/30242-kinect-matlab
有關matlab for kinect的一些接口。
http://news.9ria.com/2012/1212/25609.html
AIR和Kinect的結合,有一些手指跟蹤的code。
http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/index.htm
研究kinect手勢識別的,任洲。剛畢業不久。
其餘網友cvpr領域的連接總結:
http://www.cnblogs.com/kshenf/
網友整理經常使用牛人連接總結,很是多。不過我的沒有沒有每一個網站都去試過。因此本文也是我本身總結本身曾經用過的或體會過的。
OpenGL有關:
NeHe的OpenGL教程英文版。
http://www.owlei.com/DancingWind/
NeHe的OpenGL教程對應的中文版,由網友周瑋翻譯的。
http://www.qiliang.net/old/nehe_qt/
NeHe的OpengGL對應的Qt版中文教程。
http://blog.csdn.net/qp120291570
網友"左腦設計,右腦編程"的Qt_OpenGL博客,寫得還不錯。
http://guiliblearning.blogspot.com/
這個博客對opengl的機制有所剖析,貌似要FQ才能進去。
cvpr綜合網站論壇博客等:
中國計算機視覺論壇
這個博客很不錯,每次看完都能讓人興奮,由於有不少關於cv領域的科技新聞,還時不時有視頻顯示。另外這個博客裏面的資源也整理得至關不錯。中文的。
一位網友的我的計算機視覺博客,有不少關於計算機視覺前沿的東西介紹,與上面的博客同樣,看了也能讓人興奮。
http://blog.csdn.net/v_JULY_v/
牛人博客,主攻數據結構,機器學習數據挖掘算法等。
該網友上面有一些計算機視覺方向的博客,博客中附有一些實驗的測試代碼.
http://blog.sciencenet.cn/u/jingyanwang
多看pami才扯談的博客,其中有很多pami文章的中文介紹。
作網絡和天然語言處理的,有很多機器學習方面的介紹。
ML經常使用博客資料等:
由 pluskid 所維護的 blog,主要記錄一些機器學習、程序設計以及各類技術和非技術的相關內容,寫得很不錯。
http://datasciencemasters.org/
裏面包含學ML/DM所須要的一些知識連接,且有些給出了視頻教程,網頁資料,電子書,開源code等,推薦!
http://cs.nju.edu.cn/zhouzh/index.htm
周志華主頁,不用介紹了,機器學習大牛,更難得的是他的不少文章都有源碼公佈。
http://www.eecs.berkeley.edu/~jpaisley/Papers.htm
John Paisley的我的主頁,主要研究機器學習領域,有些文章有代碼提供。
裏面有一些常見機器學習算法的詳細推導過程。
http://blog.csdn.net/abcjennifer
浙江大學CS碩士在讀,關注計算機視覺,機器學習,算法研究,博弈, 人工智能, 移動互聯網等學科和產業。該博客中有不少機器學習算法方面的介紹。
無垠天空的機器學習博客。
http://www.chalearn.org/index.html
機器學習挑戰賽。
licstar的技術博客,偏天然語言處理方向。
國內科研團隊和牛人網頁:
http://vision.ia.ac.cn/zh/index_cn.html
中科院自動化所機器視覺課題小組,有相關數據庫、論文、課件等下載。
http://www.cbsr.ia.ac.cn/users/szli/
李子青教授我的主頁,中科院自動化所cvpr領域牛叉人!
http://www4.comp.polyu.edu.hk/~cslzhang/
香港理工大學教授lei zhang我的主頁,也是cvpr領域一大牛人啊,cvpr,iccv各類發表。更重要的是他因此牛叉論文的code所有公開,很是可貴!
http://liama.ia.ac.cn/wiki/start
中法信息、自動化與應用聯合實驗室,裏面不少內容不只限而cvpr,還有ai領域一些其餘的研究。
http://www.cogsci.xmu.edu.cn/cvl/english/
廈門大學特聘教授,cv領域一位牛人。研究方向主要爲目標檢測,目標跟蹤,運動估計,三維重建,魯棒統計學,光流計算等。
http://idm.pku.edu.cn/index.aspx
北京大學數字視頻編碼技術國家實驗室。
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
libsvm項目網址,臺灣大學的,很火!
http://www.jdl.ac.cn/user/sgshan/index.htm
山世光,人臉識別研究比較牛。在中國科學院智能信息處理重點實驗室
國外科研團隊和牛人網頁:
https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
常見計算機視覺資源整理索引,國外學者整理,全是出名的算法,而且帶有代碼的,這個很是有幫助,其連接都是相關領域很火的代碼。
http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/txtv-groups.html
國外學者整理的各高校研究所團隊網站
http://research.microsoft.com/en-us/groups/vision/
微軟視覺研究小組,不解釋,你們懂的,牛!
http://lear.inrialpes.fr/index.php
法國國家信息與自動化研究所,有對應牛人的連接,論文項目網頁連接,且一些code對應連接等。
http://www.cs.ubc.ca/~pcarbo/objrecls/
Learning to recognize objects with little supervision該篇論文的項目網頁,有對應的code下載,另附有詳細說明。
http://www.eecs.berkeley.edu/~lbourdev/poselets/
poselets相關研究界面,關於poselets的第一手資料。
http://www.cse.oulu.fi/CMV/Research
芬蘭奧盧大學計算機科學與工程學院網頁,裏面有不少cv領域相關的研究,好比說人臉,臉部表情,人體行爲識別,跟蹤,人機交互等cv基本都涉及有。
http://www.cs.cmu.edu/~cil/vision.html
卡耐基梅隆大學計算機視覺主頁,內容很是多。惋惜的是該網站內容只更新到了2004年。
http://vision.stanford.edu/index.html
斯坦福大學計算機視覺主頁,裏面有很是很是多的牛人,好比說你們熟悉的lifeifei.
http://www.wavelet.org/index.php
關於wavelet研究的網頁。
加州大學洛杉磯分校統計學院,關於統計學習方面各類資料,且有相應的網上公開課。
卡耐基梅隆大學Alexei(Alyosha)Efros教授我的網站,計算機圖形學高手。
http://web.mit.edu/torralba/www//
mit牛人Associate教授我的網址,主要研究計算機視覺人體視覺感知,目標識別和場景理解等。
http://people.csail.mit.edu/billf/
mit牛人William T. Freeman教授,主要研究計算機視覺和圖像學
http://www.research.ibm.com/peoplevision/
IBM人體視覺研究中心,裏面除了有其研究小組的最新成果外,還有不少測試數據(特別是視頻)供下載。
vlfeat主頁,vlfeat也是一個開源組織,主要定位在一些最流行的視覺算法開源上,C編寫,其不少算法效果比opencv要好,不過數量不全,可是很是有用。
http://www.robots.ox.ac.uk/~az/
Andrew Zisserman的我的主頁,這人你們應該熟悉,《計算機視覺中的多視幾何》這本神書的做者之一。
http://www.cs.utexas.edu/~grauman/
KristenGrauman教授的我的主頁,是個大美女,且是2011年「馬爾獎」得到者,」馬爾獎「你們都懂的,計算機視覺領域的最高獎項,目前無一個國內學者得到過。她的主要研究方法是視覺識別。
http://groups.csail.mit.edu/vision/welcome/
mit視覺實驗室主頁。
http://code.google.com/p/sixthsense/
曾經在網絡上很是出名一個視頻,一個做者研究的第六感裝置,如今這個就是其開源的主頁。
http://vision.ucsd.edu/~pdollar/research.html#BehaviorRecognitionAnimalBehavior
Piotr Dollar的我的主要,主要研究方向是人體行爲識別。
http://www.mmp.rwth-aachen.de/
移動多媒體處理,將移動設備,計算機圖像學,視覺,圖像處理等結合的領域。
http://www.di.ens.fr/~laptev/index.html
Ivan Laptev牛人主頁,主要研究人體行爲識別。有不少數據庫能夠下載。
http://blogs.oregonstate.edu/hess/
Rob Hess的我的主要,裏面有源碼下載,好比說粒子濾波,他寫的粒子濾波在網上很火。
http://morethantechnical.googlecode.com/svn/trunk/
cvpr領域一些小型的開源代碼。
作行人檢測的一個團隊,內部有一些行人檢測的代碼下載。
http://www.cs.utexas.edu/~grauman/research/pubs.html
UT-Austin計算機視覺小組,包含的視覺研究方向比較廣,且有的文章有源碼,你只須要填一個郵箱地址,系統會自動發跟源碼相關的信息過來。
http://www.robots.ox.ac.uk/~vgg/index.html
visual geometry group
圖像:
http://blog.sina.com.cn/s/blog_4cccd8d301012pw5.html
交互式圖像分割代碼。
http://vision.csd.uwo.ca/code/
graphcut優化代碼。
語音:
http://danielpovey.com/kaldi-lectures.html
語音處理中的kaldi學習。
算法分析與設計(計算機領域的基礎算法):
http://www.51nod.com/focus.html
該網站主要是討論一些算法題。裏面的李陶冶是個大牛,回答了不少算法題。
一些綜合topic列表:
http://www.cs.cornell.edu/courses/CS7670/2011fa/
計算機視覺中的些topic(Special Topics in Computer Vision),截止到2011年爲止,其引用的文章都是很是頂級的topic。
書籍相關網頁:
http://www.imageprocessingplace.com/index.htm
岡薩雷斯的《數字圖像處理》一書網站,包含課程材料,matlab圖像處理工具包,課件ppt等相關素材。
Consumer Depth Cameras for Computer Vision
很優秀的一本書,不過很貴,買不起啊!作深度信息的使用這本書還不錯,google圖中能夠預覽一部分。
Making.Things.See
針對Kinect寫的,主要關注深度信息,較爲基礎。書籍中有很多例子,貌似是java寫的。
國內一些AI相關的研討會:
http://www.iipl.fudan.edu.cn/MLA13/index.htm
中國機器學習及應用研討會(這個是2013年的)
期刊會議論文下載:
幾個頂級會議論文公開下載界面,好比說ICCV,CVPR,ECCV,ACCV,ICPR,SIGGRAPH等。
cvpr2012的官方地址,裏面有各類資料和信息,其餘年份的地址相似推理更改便可。
http://www.sciencedirect.com/science/journal/02628856
ICV期刊下載
http://www.computer.org/portal/web/tpami
TPAMI期刊,AI領域中能夠算得上是最頂級的期刊了,裏面有很多cvpr方面的內容。
http://www.springerlink.com/content/100272/
IJCV的網址。
NIPS官網,有論文下載列表。
http://graphlab.org/lsrs2013/program/
LSRS (會議)地址,大規模推薦系統,其它年份依次類推。
會議期刊相關信息:
http://conferences.visionbib.com/Iris-Conferences.html
該網頁列出了圖像處理,計算機視覺領域相關幾乎全部比較出名的會議時間表。
http://conferences.visionbib.com/Browse-conf.php
上面網頁的一個子網頁,列出了最近的CV領域提交paper的deadline。
cvpr相關數據庫下載:
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
微軟研究院牛人Wallflower Paper的論文中用到的目標檢測等測試圖片
http://archive.ics.uci.edu/ml/
UCI數據庫列表下載,最經常使用的機器學習數據庫列表。
http://www.cs.rochester.edu/~rmessing/uradl/
人體行爲識別經過關鍵點的跟蹤視頻數據庫,Rochester university的
http://www.research.ibm.com/peoplevision/performanceevaluation.html
IBM人體視覺研究中心,有視頻監控等很是多的測試視頻。
http://www.cvpapers.com/datasets.html
該網站上列出了常見的cvpr研究的數據庫。
http://www.cs.washington.edu/rgbd-dataset/index.html
RGB-D Object Dataset.作目標識別的。
AI相關娛樂網頁:
該網站很好玩,能夠測試你內心想出的一我的名(固然前提是這我的必須有必定的知名度),而後該網站會提出一系列的問題,你能夠選擇yes or no,or I don’t know等等,最後系統會顯示你心中所想的那我的。
http://www.doggelganger.co.nz/
人與狗的匹配遊戲,攝像頭採集人臉,呵呵…
Android相關:
https://code.google.com/p/android-ui-utils/
該網站上有一些android圖標,菜單等跟界面有關的設計工具,能夠用來作一些簡單的UI設計.
工具和code下載:
http://lear.inrialpes.fr/people/dorko/downloads.html
6種常見的圖像特徵點檢測子,linux下環境運行。不過只提供了二進制文件,不提供源碼。
http://www.cs.ubc.ca/~pcarbo/objrecls/index.html#code
ssmcmc的matlab代碼,是Learning to recognize objects with little supervision這一系列文章用的源碼,屬於目標識別方面的研究。
http://www.robots.ox.ac.uk/~timork/
仿射無關尺度特徵點檢測算子源碼,還有些其它算子的源碼或二進制文件。
http://www.vision.ee.ethz.ch/~bleibe/code/ism.html
隱式形狀模型(ISM)項目主頁,做者Bastian Leibe提供了linux下運行的二進制文件。
http://www.di.ens.fr/~laptev/download.html#stip
Ivan Laptev牛人主頁中的STIP特徵點檢測code,可是也只是有二進制文件,無源碼。該特徵點在行爲識別中該特徵點很是有名。
http://ai.stanford.edu/~quocle/
斯坦福大學Quoc V.Le主頁,上有它2011年行爲識別文章的代碼。
開源軟件:
一些ML開源軟件在這裏基本均可以搜到,有上百個。
https://github.com/myui/hivemall
Scalable machine learning library for Hive/Hadoop.
http://scikit-learn.org/stable/
基於python的機器學習開源軟件,文檔寫得不錯。
挑戰賽:
http://www.chioka.in/kaggle-competition-solutions/
kaggle一些挑戰賽的code.
公開課:
網易公開課,國內作得很不錯的公開課,翻譯了一些國外出名的公開課教程,與國外公開課平臺coursera有合做。
coursera在線教育網上公開課,很新,有個郵箱註冊便可學習,有很多課程,且有對應的練習,特別是編程練習,超讚。
udacity公開課程下載連接,其實速度還能夠。裏面有很多好教程。
在最近的學習中,看到一些有用的資源就記下來了,如今總結一下,歡迎補充!
機器視覺開源代碼合集
計算機視覺算法與代碼集錦
計算機視覺的一些測試數據集和源碼站點
SIFT官網
SURF PCA-SIFT and SIFT 開源代碼 總結
經常使用圖像數據集:標註、檢索
KTH-TIPS2 image dataset
視頻中行爲識別公開數據庫彙總
MSR Action Recognition Datasets and Codes
Sparse coding simulation software
稀疏表示
Deep Learning源代碼收集-持續更新
Training a deep autoencoder or a classifier on MNIST digits
Charlie Tang
本文實現了09年CVPR的文章
Kaggle 機器學習競賽冠軍及優勝者的源代碼彙總
Feature_detection
機器學習視頻公開課
機器學習的最佳入門學習資源
http://blog.jobbole.com/82630/
國外程序員整理的機器學習資源大全
一些下載資源的連接
Some Useful Links
A Library for Large Linear Classification
本博文轉自
http://blog.csdn.net/huixingshao/article/details/71406084
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#t-cnn
做者:好記性不如爛筆頭!
出處:http://www.cnblogs.com/zlslch/
本文版權歸做者和博客園共有,歡迎轉載,但未經做者贊成必須保留此段聲明,且在文章頁面明顯位置給出原文連接,不然保留追究法律責任的權利。