機器學習和深度學習資源彙總(陸續更新)

 

 

 

  

  很少說,直接上乾貨!php

 

 

    本篇博客的目地,是對工做學習過程當中所遇所見的一些有關深度學習、機器學習的優質資源,做分類彙總,方便本身查閱,也方便他人學習借用。html

    主要會涉及一些優質的理論書籍和論文、一些實惠好用的工具庫和開源庫、一些供入門該理論入門所用的demo等等。java

    因爲本博客將不按期更新,儘可能將較爲前沿的深度學習、機器學習內容整理下來,須要轉載的同窗儘可能附上本文的連接,方便得到最新的內容。python

 

 

 

機器學習領域相關的大牛推薦(陸續更新)

 

 

  • 相關的理論、書籍、論文、課程、博客:
    • [Book] Yoshua Bengio, Ian Goodfellow, Aaron Courville. Deep Learning. 2015.

 

 

 

  • 相關的庫、工具
    • Caffe (C++, with Python wrapper)

 

 

  • 相關的開源項目、demo
 
 
 

 

 

 

 

Method VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat       24.3%    
R-CNN (AlexNet) 58.5% 53.7% 53.3% 31.4%    
R-CNN (VGG16) 66.0%          
SPP_net(ZF-5) 54.2%(1-model), 60.9%(2-model)     31.84%(1-model), 35.11%(6-model)    
DeepID-Net 64.1%     50.3%    
NoC 73.3%   68.8%      
Fast-RCNN (VGG16) 70.0% 68.8% 68.4%   19.7%(@[0.5-0.95]), 35.9%(@0.5)  
MR-CNN 78.2%   73.9%      
Faster-RCNN (VGG16) 78.8%   75.9%   21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN (ResNet-101) 85.6%   83.8%   37.4%(@[0.5-0.95]), 59.0%(@0.5)  
SSD300 (VGG16) 77.2%   75.8%   25.1%(@[0.5-0.95]), 43.1%(@0.5) 46 fps
SSD512 (VGG16) 79.8%   78.5%   28.8%(@[0.5-0.95]), 48.5%(@0.5) 19 fps
ION 79.2%   76.4%      
CRAFT 75.7%   71.3% 48.5%    
OHEM 78.9%   76.3%   25.5%(@[0.5-0.95]), 45.9%(@0.5)  
R-FCN (ResNet-50) 77.4%         0.12sec(K40), 0.09sec(TitianX)
R-FCN (ResNet-101) 79.5%         0.17sec(K40), 0.12sec(TitianX)
R-FCN (ResNet-101),multi sc train 83.6%   82.0%   31.5%(@[0.5-0.95]), 53.2%(@0.5)  
PVANet 9.0 89.8%   84.2%     750ms(CPU), 46ms(TitianX)

 

 


Leaderboard

Detection Results: VOC2012linux

 

 

Papers

Deep Neural Networks for Object Detectionandroid

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networksgit

 

 

 

 

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation程序員

 

 

MultiBox

Scalable Object Detection using Deep Neural Networksgithub

Scalable, High-Quality Object Detectionweb

 

 

 

 

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

 

 

 

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

 

 

 

 

 

NoC

Object Detection Networks on Convolutional Feature Maps

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

 

 

 

 

Fast R-CNN

Fast R-CNN

 

 

 

 

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

 

 

 

 

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

 

 

 

 

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN in MXNet with distributed implementation and data parallelization

Contextual Priming and Feedback for Faster R-CNN

An Implementation of Faster RCNN with Study for Region Sampling

 

 

 

 

 

 

YOLO

You Only Look Once: Unified, Real-Time Object Detection

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

Start Training YOLO with Our Own Data

R-CNN minus R

 

 

AttentionNet

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

 

 

 

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

 

 

 

 

 

SSD

SSD: Single Shot MultiBox Detector

 

 

Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

Adaptive Object Detection Using Adjacency and Zoom Prediction

 

 

 

 

 

G-CNN

G-CNN: an Iterative Grid Based Object Detector

Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

We don’t need no bounding-boxes: Training object class detectors using only human verification

 

 

HyperNet

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

 

 

MultiPathNet

A MultiPath Network for Object Detection

 

 

CRAFT

CRAFT Objects from Images

 

 

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

 

 

 

 

 

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

Weakly supervised object detection using pseudo-strong labels

Recycle deep features for better object detection

 

 

 

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

Multi-stage Object Detection with Group Recursive Learning

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

 

 

 

PVANET

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

 

 

 

GBD-Net

Gated Bi-directional CNN for Object Detection

Crafting GBD-Net for Object Detection

 

 

 

 

 

 

StuffNet

StuffNet: Using ‘Stuff’ to Improve Object Detection

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

Hierarchical Object Detection with Deep Reinforcement Learning

Learning to detect and localize many objects from few examples

Speed/accuracy trade-offs for modern convolutional object detectors

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

 

 

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

Action-Driven Object Detection with Top-Down Visual Attentions

Beyond Skip Connections: Top-Down Modulation for Object Detection

 

 

 

YOLOv2

YOLO9000: Better, Faster, Stronger

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

 

 

 

 

DSSD

DSSD : Deconvolutional Single Shot Detector

Wide-Residual-Inception Networks for Real-time Object Detection

Attentional Network for Visual Object Detection

 

CC-Net

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

https://arxiv.org/abs/1703.10295

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

Spatial Memory for Context Reasoning in Object Detection

Improving Object Detection With One Line of Code

Accurate Single Stage Detector Using Recurrent Rolling Convolution

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

 

 

 

Detection From Video

Learning Object Class Detectors from Weakly Annotated Video

Analysing domain shift factors between videos and images for object detection

Video Object Recognition

Deep Learning for Saliency Prediction in Natural Video

 

 

T-CNN

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

Object Detection from Video Tubelets with Convolutional Neural Networks

Object Detection in Videos with Tubelets and Multi-context Cues

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

CNN Based Object Detection in Large Video Images

Object Detection in Videos with Tubelet Proposal Networks

Flow-Guided Feature Aggregation for Video Object Detection

Video Object Detection using Faster R-CNN

 

 

Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

 

 

 

Object Detection on RGB-D

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

https://arxiv.org/abs/1703.03347

 

 

 

 

 

 

 

 

 

Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

Predicting Eye Fixations using Convolutional Neural Networks

Saliency Detection by Multi-Context Deep Learning

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Shallow and Deep Convolutional Networks for Saliency Prediction

Recurrent Attentional Networks for Saliency Detection

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

Salient Object Subitizing

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

A Deep Multi-Level Network for Saliency Prediction

Visual Saliency Detection Based on Multiscale Deep CNN Features

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

Deeply supervised salient object detection with short connections

Weakly Supervised Top-down Salient Object Detection

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

Visual Saliency Prediction Using a Mixture of Deep Neural Networks

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

Saliency Detection by Forward and Backward Cues in Deep-CNNs

https://arxiv.org/abs/1703.00152

Supervised Adversarial Networks for Image Saliency Detection

https://arxiv.org/abs/1704.07242

 

 

 

 

Saliency Detection in Video

Deep Learning For Video Saliency Detection

 

 

 

 

 

 

Visual Relationship Detection

 

Visual Relationship Detection with Language Priors

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

Visual Translation Embedding Network for Visual Relation Detection

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

Detecting Visual Relationships with Deep Relational Networks

 

 

Specific Object Deteciton

Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

From Facial Parts Responses to Face Detection: A Deep Learning Approach

Compact Convolutional Neural Network Cascade for Face Detection

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

Finding Tiny Faces

Towards a Deep Learning Framework for Unconstrained Face Detection

Supervised Transformer Network for Efficient Face Detection

UnitBox

UnitBox: An Advanced Object Detection Network

Bootstrapping Face Detection with Hard Negative Examples

Grid Loss: Detecting Occluded Faces

A Multi-Scale Cascade Fully Convolutional Network Face Detector

 

 

 

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

Face Detection using Deep Learning: An Improved Faster RCNN Approach

Faceness-Net: Face Detection through Deep Facial Part Responses

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained 「Hard Faces」

End-To-End Face Detection and Recognition

https://arxiv.org/abs/1703.10818

 

 

 

 

Facial Point / Landmark Detection

Deep Convolutional Network Cascade for Facial Point Detection

Facial Landmark Detection by Deep Multi-task Learning

A Recurrent Encoder-Decoder Network for Sequential Face Alignment

Detecting facial landmarks in the video based on a hybrid framework

Deep Constrained Local Models for Facial Landmark Detection

Effective face landmark localization via single deep network

A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

https://arxiv.org/abs/1704.01880

 

 

 

People Detection

End-to-end people detection in crowded scenes

Detecting People in Artwork with CNNs

Deep Multi-camera People Detection

 

 

 

 

 

 

 

 

Person Head Detection

Context-aware CNNs for person head detection

 

 

Pedestrian Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

Deep Learning Strong Parts for Pedestrian Detection

Deep convolutional neural networks for pedestrian detection

Scale-aware Fast R-CNN for Pedestrian Detection

New algorithm improves speed and accuracy of pedestrian detection

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: 「set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%」
  • arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

Is Faster R-CNN Doing Well for Pedestrian Detection?

Reduced Memory Region Based Deep Convolutional Neural Network Detection

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

Multispectral Deep Neural Networks for Pedestrian Detection

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

 

 

 

Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

Evolving Boxes for fast Vehicle Detection

 

 

 

 

 

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

 

 

Boundary / Edge / Contour Detection

Holistically-Nested Edge Detection

Unsupervised Learning of Edges

Pushing the Boundaries of Boundary Detection using Deep Learning

Convolutional Oriented Boundaries

Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks

Richer Convolutional Features for Edge Detection

 

 

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

 

 

Fruit Detection

Deep Fruit Detection in Orchards

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

 

 

Part Detection

Objects as context for part detection

https://arxiv.org/abs/1703.09529

 

 

Others

Deep Deformation Network for Object Landmark Localization

Fashion Landmark Detection in the Wild

Deep Learning for Fast and Accurate Fashion Item Detection

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as 「OSM-Crosswalk-Detection」)

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

Deep Cuboid Detection: Beyond 2D Bounding Boxes

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

Deep Learning Logo Detection with Data Expansion by Synthesising Context

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

Automatic Handgun Detection Alarm in Videos Using Deep Learning

 

 

 

 

 

 

Object Proposal

 

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

Scale-aware Pixel-wise Object Proposal Networks

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

Learning to Segment Object Proposals via Recursive Neural Networks

Learning Detection with Diverse Proposals

  • intro: CVPR 2017
  • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
  • arxiv: https://arxiv.org/abs/1704.03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

Improving Small Object Proposals for Company Logo Detection

 

 

Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

Weakly Supervised Object Localization Using Size Estimates

Active Object Localization with Deep Reinforcement Learning

Localizing objects using referring expressions

LocNet: Improving Localization Accuracy for Object Detection

Learning Deep Features for Discriminative Localization

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

 

 

 

 

Tutorials / Talks

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

Towards Good Practices for Recognition & Detection

 

 

 

 

 

 

 

Projects

TensorBox: a simple framework for training neural networks to detect objects in images

Object detection in torch: Implementation of some object detection frameworks in torch

Using DIGITS to train an Object Detection network

FCN-MultiBox Detector

KittiBox: A car detection model implemented in Tensorflow.

 

 

 

Tools

BeaverDam: Video annotation tool for deep learning training labels

https://github.com/antingshen/BeaverDam

 

 

 

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

Deep Learning for Object Detection with DIGITS

Analyzing The Papers Behind Facebook’s Computer Vision Approach

Easily Create High Quality Object Detectors with Deep Learning

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

Object Detection in Satellite Imagery, a Low Overhead Approach

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

Faster R-CNN Pedestrian and Car Detection

Small U-Net for vehicle detection

Region of interest pooling explained

 

 

 

 

 

 

 

 

Deep Learning(深度學習):

ufldl的2個教程(這個沒得說,入門絕對的好教程,Ng的,邏輯清晰有練習):一

ufldl的2個教程(這個沒得說,入門絕對的好教程,Ng的,邏輯清晰有練習):二

Bengio團隊的deep learning教程,用的theano庫,主要是rbm系列,搞python的能夠參考,很不錯。

deeplearning.net主頁,裏面包含的信息量很是多,有software, reading list, research lab, dataset, demo等,強烈推薦,本身去發現好資料。

Deep learning的toolbox,matlab實現的,對應源碼來學習一些常見的DL模型頗有幫助,這個庫我主要是用來學習算法實現過程的。

2013年龍星計劃深度學習教程,鄧力大牛主講,雖然老師準備得不充分,不過仍是頗有收穫的。

Hinton大牛在coursera上開的神經網絡課程,DL部分有很多,很是贊,沒有廢話,課件每句話都包含了不少信息,有必定DL基礎後去聽收穫更大。

Larochelle關於DL的課件,邏輯清晰,覆蓋面廣,包含了rbm系列,autoencoder系列,sparse coding系列,還有crf,cnn,rnn等雖然網頁是法文,可是課件是英文。

CMU大學2013年的deep learning課程,有很多reading paper能夠參考。

達慕思大學Lorenzo Torresani的2013Deep learning課程reading list.

Deep Learning Methods for Vision(餘凱等在cvpr2012上組織一個workshop,關於DL在視覺上的應用)。

斯坦福Ng團隊成員連接主頁,能夠進入團隊成員的主頁,比較熟悉的有Richard Socher, Honglak Lee, Quoc Le等。

多倫多ML團隊成員連接主頁,能夠進入團隊成員主頁,包括DL鼻祖hinton,還有Ruslan Salakhutdinov , Alex Krizhevsky等。

蒙特利爾大學機器學習團隊成員連接主頁,包括大牛Bengio,還有Ian Goodfellow 等。

紐約大學的機器學習團隊成員連接主頁,包括大牛Lecun,還有Rob Fergus等。

Charlie Tang我的主頁,結合DL+SVM.

豆瓣上的腦與deep learning讀書會,有講義和部分視頻,主要介紹了一些於deep learning相關的生物神經網絡。

Large Scale ML的課程,由Lecun和Langford講的,能不推薦麼。

Yann Lecun的2014年Deep Learning課程主頁。 視頻連接。 

吳立德老師《深度學習課程》

一些常見的DL code列表,csdn博主zouxy09的博文,Deep Learning源代碼收集-持續更新…

Deep Learning for NLP (without Magic),由DL界5大高手之一的Richard Socher小組搞的,他主要是NLP的。

2012 Graduate Summer School: Deep Learning, Feature Learning,高手雲集,深度學習盛宴,幾乎全部的DL大牛都有參加。

matlab下的maxPooling速度優化,調用C++實現的。

2014年ACL機器學習領域主席Kevin Duh的深度學習入門講座視頻。

R-CNN code: Regions with Convolutional Neural Network Features.

 

 

 

Machine Learning(機器學習):

介紹圖模型的一個ppt,很是的贊,ppt做者總結得很給力,裏面還包括了HMM,MEM, CRF等其它圖模型。反正看完挺有收穫的。

機器學習一個視頻教程,youtube上的,翻吧,內容很全面,偏機率統計模型,每一小集只有幾分鐘。 

龍星計劃2012機器學習,由余凱和張潼主講。

demonstrate 的 blog :關於PGM(機率圖模型)系列,主要按照Daphne Koller的經典PGM教程介紹的,你們依次google之

FreeMind的博客,主要關於機器學習的。

Tom Mitchell大牛的機器學習課程,他的machine learning教科書很是出名。

CS109,Data Science,用python介紹機器學習算法的課程。

CCF主辦的一些視頻講座。

 

 

 

國外技術團隊博客:

Netflix技術博客,不少乾貨。

 

 

 

Computer Vision(計算機視覺):

MIT2013年秋季課程:Advances in Computer Vision,有練習題,有些有code.

IPAM一個計算機視覺的短時間課程,有很多牛人蔘加。

 

 

 

 

OpenCV相關:

http://opencv.org/

2012年7月4日隨着opencv2.4.2版本的發佈,opencv更改了其最新的官方網站地址。

http://www.opencvchina.com/

好像12年纔有這個論壇的,比較新。裏面有針對《learning opencv》這本書的視頻講解,不過視頻教學還沒出完,正在更新中。對剛入門學習opencv的人來講很不錯。

http://www.opencv.org.cn/forum/

opencv中文論壇,對於初次接觸opencv的學者來講比較不錯,入門資料多,opencv的各類英文文檔也翻譯成中文了。不足是感受這個論壇上發帖提問不多人回答,也就是說討論不夠激烈。

http://opencv.jp/

opencv的日文網站,裏面有很多例子代碼,看不懂日文能夠用網站自帶的翻譯,能看個大概。

http://code.opencv.org/projects/opencv

opencv版本bug修補,版本更新,以及各類相關大型活動安排,還包含了opencv最近幾個月內的活動路線,即將來將增長的功能等,能夠掌握各類關於opencv進展狀況的最新進展。

http://tech.groups.yahoo.com/group/OpenCV/

opencv雅虎郵件列表,聽說是最好的opencv論壇,信息更新最新的地方。不過我的認爲要查找相關主題的內容,在郵件列表中很是不方便。

http://www.cmlab.csie.ntu.edu.tw/~jsyeh/wiki/doku.php

臺灣大學暑假集訓網站,內有連接到與opencv集訓相關的網頁。感受這種教育形式還蠻不錯的。

http://sourceforge.net/projects/opencvlibrary/

opencv版本發佈地方。

http://code.opencv.org/projects/opencv/wiki/ChangeLog#241    http://opencv.willowgarage.com/wiki/OpenCV%20Change%20Logs

opencv版本內容更改日誌網頁,前面那個網頁更新最快。

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/tutorials.html

opencv中文教程網頁,分幾個模塊講解,有代碼有過程。內容是網友翻譯opencv自帶的doc文件裏的。

https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

網友總結的經常使用帶有cvpr領域常見算法code連接的網址,感受很是的不錯。

http://fossies.org/dox/OpenCV-2.4.2/

該網站能夠查看opencv中一些函數的變量接口,還會列出函數之間的結構圖。

http://opencv.itseez.com/

opencv的函數、類等查找網頁,有導航,查起來感受不錯。

 

 

 

優化:

submodual優化網頁。

Geoff Gordon的優化課程,youtube上有對應視頻。

 

 

 

數學:

http://www.youku.com/playlist_show/id_19465801.html

《計算機中的數學》系列視頻,8位老師10講內容,生動介紹微積分和線性代數基本概念在計算機學科中的各類有趣應用!

 

 

 

Linux學習資料:

http://itercast.com/library/1

linux入門的基礎視頻教程,對於新手可選擇看第一部分,視頻來源於LinuxCast.net網站,還不錯。

 

 

 

OpenNI+Kinect相關:

http://1.yuhuazou.sinaapp.com/

網友晨宇思遠的博客,主攻cvpr,ai等。

http://blog.csdn.net/chenli2010/article/details/6887646

kinect和openni學習資料彙總。

http://blog.csdn.net/moc062066/article/category/871261

OpenCV 計算機視覺 kinect的博客:

http://kheresy.wordpress.com/index_of_openni_and_kinect/comment-page-5/

網友Heresy的博客,裏面有很多kinect的文章,寫的比較詳細。

http://www.cnkinect.com/

體感遊戲中文網,有很多新的kinect資訊。

http://www.kinectutorial.com/

Kinect體感開發網。

http://code.google.com/p/openni-hand-tracker

openni_hand_tracking google code項目。

http://blog.candescent.ch/

網友的kinect博客,裏面有不少手勢識別方面的文章介紹,還有源碼,不過貌似是基於c#的。

https://sites.google.com/site/colordepthfusion/

一些關於深度信息和顏色信息融合(fusion)的文章。

http://projects.ict.usc.edu/mxr/faast/

kinect新的庫,能夠結合OpenNI使用。

https://sites.google.com/a/chalearn.org/gesturechallenge/

kinect手勢識別網站。

http://www.ros.org/wiki/mit-ros-pkg

mit的kinect項目,有code。主要是與手勢識別相關。

http://www.thoughtden.co.uk/blog/2012/08/kinecting-people-our-top-6-kinect-projects/

kinect 2012年度最具創新的6個項目,有視頻,確實夠創新的!

http://www.cnblogs.com/yangyangcv/archive/2011/01/07/1930349.html

kinect多點觸控的一篇博文。

http://sourceforge.net/projects/kinect-mex/

http://www.mathworks.com/matlabcentral/fileexchange/30242-kinect-matlab

有關matlab for kinect的一些接口。

http://news.9ria.com/2012/1212/25609.html

AIR和Kinect的結合,有一些手指跟蹤的code。

http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/index.htm

研究kinect手勢識別的,任洲。剛畢業不久。

 

 

 

其餘網友cvpr領域的連接總結:

http://www.cnblogs.com/kshenf/

網友整理經常使用牛人連接總結,很是多。不過我的沒有沒有每一個網站都去試過。因此本文也是我本身總結本身曾經用過的或體會過的。

 

 

 

OpenGL有關:

http://nehe.gamedev.net/

NeHe的OpenGL教程英文版。

http://www.owlei.com/DancingWind/

NeHe的OpenGL教程對應的中文版,由網友周瑋翻譯的。

http://www.qiliang.net/old/nehe_qt/

NeHe的OpengGL對應的Qt版中文教程。

http://blog.csdn.net/qp120291570

網友"左腦設計,右腦編程"的Qt_OpenGL博客,寫得還不錯。

http://guiliblearning.blogspot.com/

這個博客對opengl的機制有所剖析,貌似要FQ才能進去。

 

 

 

 

cvpr綜合網站論壇博客等:

http://www.cvchina.net/

中國計算機視覺論壇

http://www.cvchina.info/

這個博客很不錯,每次看完都能讓人興奮,由於有不少關於cv領域的科技新聞,還時不時有視頻顯示。另外這個博客裏面的資源也整理得至關不錯。中文的。

http://www.bfcat.com/

一位網友的我的計算機視覺博客,有不少關於計算機視覺前沿的東西介紹,與上面的博客同樣,看了也能讓人興奮。

http://blog.csdn.net/v_JULY_v/

牛人博客,主攻數據結構,機器學習數據挖掘算法等。

http://blog.youtueye.com/

該網友上面有一些計算機視覺方向的博客,博客中附有一些實驗的測試代碼.

http://blog.sciencenet.cn/u/jingyanwang

多看pami才扯談的博客,其中有很多pami文章的中文介紹。

http://chentingpc.me/

作網絡和天然語言處理的,有很多機器學習方面的介紹。

 

 

 

 

ML經常使用博客資料等:

http://freemind.pluskid.org/

由 pluskid 所維護的 blog,主要記錄一些機器學習、程序設計以及各類技術和非技術的相關內容,寫得很不錯。

http://datasciencemasters.org/

裏面包含學ML/DM所須要的一些知識連接,且有些給出了視頻教程,網頁資料,電子書,開源code等,推薦!

http://cs.nju.edu.cn/zhouzh/index.htm

周志華主頁,不用介紹了,機器學習大牛,更難得的是他的不少文章都有源碼公佈。

http://www.eecs.berkeley.edu/~jpaisley/Papers.htm

John Paisley的我的主頁,主要研究機器學習領域,有些文章有代碼提供。

http://foreveralbum.yo2.cn/

裏面有一些常見機器學習算法的詳細推導過程。

http://blog.csdn.net/abcjennifer

浙江大學CS碩士在讀,關注計算機視覺,機器學習,算法研究,博弈, 人工智能, 移動互聯網等學科和產業。該博客中有不少機器學習算法方面的介紹。

http://www.wytk2008.net/

無垠天空的機器學習博客。

http://www.chalearn.org/index.html

機器學習挑戰賽。

http://licstar.net/

licstar的技術博客,偏天然語言處理方向。

 

 

 

 

國內科研團隊和牛人網頁:

http://vision.ia.ac.cn/zh/index_cn.html

中科院自動化所機器視覺課題小組,有相關數據庫、論文、課件等下載。

http://www.cbsr.ia.ac.cn/users/szli/

李子青教授我的主頁,中科院自動化所cvpr領域牛叉人!

http://www4.comp.polyu.edu.hk/~cslzhang/

香港理工大學教授lei zhang我的主頁,也是cvpr領域一大牛人啊,cvpr,iccv各類發表。更重要的是他因此牛叉論文的code所有公開,很是可貴!

http://liama.ia.ac.cn/wiki/start

中法信息、自動化與應用聯合實驗室,裏面不少內容不只限而cvpr,還有ai領域一些其餘的研究。

http://www.cogsci.xmu.edu.cn/cvl/english/

廈門大學特聘教授,cv領域一位牛人。研究方向主要爲目標檢測,目標跟蹤,運動估計,三維重建,魯棒統計學,光流計算等。

http://idm.pku.edu.cn/index.aspx

北京大學數字視頻編碼技術國家實驗室。 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

libsvm項目網址,臺灣大學的,很火!

http://www.jdl.ac.cn/user/sgshan/index.htm

山世光,人臉識別研究比較牛。在中國科學院智能信息處理重點實驗室

 

 

 

 

國外科研團隊和牛人網頁:

https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

常見計算機視覺資源整理索引,國外學者整理,全是出名的算法,而且帶有代碼的,這個很是有幫助,其連接都是相關領域很火的代碼。

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/txtv-groups.html

國外學者整理的各高校研究所團隊網站

http://research.microsoft.com/en-us/groups/vision/

微軟視覺研究小組,不解釋,你們懂的,牛!

http://lear.inrialpes.fr/index.php

法國國家信息與自動化研究所,有對應牛人的連接,論文項目網頁連接,且一些code對應連接等。

http://www.cs.ubc.ca/~pcarbo/objrecls/

Learning to recognize objects with little supervision該篇論文的項目網頁,有對應的code下載,另附有詳細說明。

http://www.eecs.berkeley.edu/~lbourdev/poselets/

poselets相關研究界面,關於poselets的第一手資料。

http://www.cse.oulu.fi/CMV/Research

芬蘭奧盧大學計算機科學與工程學院網頁,裏面有不少cv領域相關的研究,好比說人臉,臉部表情,人體行爲識別,跟蹤,人機交互等cv基本都涉及有。

http://www.cs.cmu.edu/~cil/vision.html

卡耐基梅隆大學計算機視覺主頁,內容很是多。惋惜的是該網站內容只更新到了2004年。

http://vision.stanford.edu/index.html

斯坦福大學計算機視覺主頁,裏面有很是很是多的牛人,好比說你們熟悉的lifeifei.

http://www.wavelet.org/index.php

關於wavelet研究的網頁。

http://civs.ucla.edu/

加州大學洛杉磯分校統計學院,關於統計學習方面各類資料,且有相應的網上公開課。

http://www.cs.cmu.edu/~efros/

卡耐基梅隆大學Alexei(Alyosha)Efros教授我的網站,計算機圖形學高手。

http://web.mit.edu/torralba/www//

mit牛人Associate教授我的網址,主要研究計算機視覺人體視覺感知,目標識別和場景理解等。

http://people.csail.mit.edu/billf/

mit牛人William T. Freeman教授,主要研究計算機視覺和圖像學

http://www.research.ibm.com/peoplevision/

IBM人體視覺研究中心,裏面除了有其研究小組的最新成果外,還有不少測試數據(特別是視頻)供下載。

http://www.vlfeat.org/

vlfeat主頁,vlfeat也是一個開源組織,主要定位在一些最流行的視覺算法開源上,C編寫,其不少算法效果比opencv要好,不過數量不全,可是很是有用。

http://www.robots.ox.ac.uk/~az/

Andrew Zisserman的我的主頁,這人你們應該熟悉,《計算機視覺中的多視幾何》這本神書的做者之一。

http://www.cs.utexas.edu/~grauman/

KristenGrauman教授的我的主頁,是個大美女,且是2011年「馬爾獎」得到者,」馬爾獎「你們都懂的,計算機視覺領域的最高獎項,目前無一個國內學者得到過。她的主要研究方法是視覺識別。

http://groups.csail.mit.edu/vision/welcome/

mit視覺實驗室主頁。

http://code.google.com/p/sixthsense/

曾經在網絡上很是出名一個視頻,一個做者研究的第六感裝置,如今這個就是其開源的主頁。

http://vision.ucsd.edu/~pdollar/research.html#BehaviorRecognitionAnimalBehavior

Piotr Dollar的我的主要,主要研究方向是人體行爲識別。

http://www.mmp.rwth-aachen.de/

移動多媒體處理,將移動設備,計算機圖像學,視覺,圖像處理等結合的領域。

http://www.di.ens.fr/~laptev/index.html

Ivan Laptev牛人主頁,主要研究人體行爲識別。有不少數據庫能夠下載。

http://blogs.oregonstate.edu/hess/

Rob Hess的我的主要,裏面有源碼下載,好比說粒子濾波,他寫的粒子濾波在網上很火。

http://morethantechnical.googlecode.com/svn/trunk/

cvpr領域一些小型的開源代碼。

http://iica.de/pd/index.py

作行人檢測的一個團隊,內部有一些行人檢測的代碼下載。

http://www.cs.utexas.edu/~grauman/research/pubs.html

UT-Austin計算機視覺小組,包含的視覺研究方向比較廣,且有的文章有源碼,你只須要填一個郵箱地址,系統會自動發跟源碼相關的信息過來。

http://www.robots.ox.ac.uk/~vgg/index.html

visual geometry group

 

 

 

 

圖像:

http://blog.sina.com.cn/s/blog_4cccd8d301012pw5.html

交互式圖像分割代碼。

http://vision.csd.uwo.ca/code/

graphcut優化代碼。

 

 

 

 

語音:

http://danielpovey.com/kaldi-lectures.html

語音處理中的kaldi學習。

 

 

 

 

算法分析與設計(計算機領域的基礎算法):

http://www.51nod.com/focus.html

該網站主要是討論一些算法題。裏面的李陶冶是個大牛,回答了不少算法題。

 

 

 

一些綜合topic列表:

http://www.cs.cornell.edu/courses/CS7670/2011fa/

計算機視覺中的些topic(Special Topics in Computer Vision),截止到2011年爲止,其引用的文章都是很是頂級的topic。

 

 

 

 

書籍相關網頁:

http://www.imageprocessingplace.com/index.htm

岡薩雷斯的《數字圖像處理》一書網站,包含課程材料,matlab圖像處理工具包,課件ppt等相關素材。

Consumer Depth Cameras for Computer Vision

很優秀的一本書,不過很貴,買不起啊!作深度信息的使用這本書還不錯,google圖中能夠預覽一部分。

Making.Things.See

針對Kinect寫的,主要關注深度信息,較爲基礎。書籍中有很多例子,貌似是java寫的。

 

 

 

國內一些AI相關的研討會:

http://www.iipl.fudan.edu.cn/MLA13/index.htm

中國機器學習及應用研討會(這個是2013年的)

 

 

 

期刊會議論文下載:

http://cvpapers.com/

幾個頂級會議論文公開下載界面,好比說ICCV,CVPR,ECCV,ACCV,ICPR,SIGGRAPH等。

http://www.cvpr2012.org/

cvpr2012的官方地址,裏面有各類資料和信息,其餘年份的地址相似推理更改便可。

http://www.sciencedirect.com/science/journal/02628856

ICV期刊下載

http://www.computer.org/portal/web/tpami

TPAMI期刊,AI領域中能夠算得上是最頂級的期刊了,裏面有很多cvpr方面的內容。

http://www.springerlink.com/content/100272/

IJCV的網址。

http://books.nips.cc/

NIPS官網,有論文下載列表。

http://graphlab.org/lsrs2013/program/

LSRS (會議)地址,大規模推薦系統,其它年份依次類推。

 

 

 

會議期刊相關信息:

http://conferences.visionbib.com/Iris-Conferences.html

該網頁列出了圖像處理,計算機視覺領域相關幾乎全部比較出名的會議時間表。

http://conferences.visionbib.com/Browse-conf.php

上面網頁的一個子網頁,列出了最近的CV領域提交paper的deadline。

 

 

 

cvpr相關數據庫下載:

http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm

微軟研究院牛人Wallflower Paper的論文中用到的目標檢測等測試圖片

http://archive.ics.uci.edu/ml/

UCI數據庫列表下載,最經常使用的機器學習數據庫列表。

http://www.cs.rochester.edu/~rmessing/uradl/

人體行爲識別經過關鍵點的跟蹤視頻數據庫,Rochester university的

http://www.research.ibm.com/peoplevision/performanceevaluation.html

IBM人體視覺研究中心,有視頻監控等很是多的測試視頻。

http://www.cvpapers.com/datasets.html

該網站上列出了常見的cvpr研究的數據庫。

http://www.cs.washington.edu/rgbd-dataset/index.html

RGB-D Object Dataset.作目標識別的。

 

 

 

AI相關娛樂網頁:

http://en.akinator.com/

該網站很好玩,能夠測試你內心想出的一我的名(固然前提是這我的必須有必定的知名度),而後該網站會提出一系列的問題,你能夠選擇yes or no,or I don’t know等等,最後系統會顯示你心中所想的那我的。

http://www.doggelganger.co.nz/

人與狗的匹配遊戲,攝像頭採集人臉,呵呵…

 

 

 

 

Android相關:

https://code.google.com/p/android-ui-utils/

該網站上有一些android圖標,菜單等跟界面有關的設計工具,能夠用來作一些簡單的UI設計.

 

 

 

 

工具和code下載:

http://lear.inrialpes.fr/people/dorko/downloads.html

6種常見的圖像特徵點檢測子,linux下環境運行。不過只提供了二進制文件,不提供源碼。

http://www.cs.ubc.ca/~pcarbo/objrecls/index.html#code

ssmcmc的matlab代碼,是Learning to recognize objects with little supervision這一系列文章用的源碼,屬於目標識別方面的研究。

http://www.robots.ox.ac.uk/~timork/

仿射無關尺度特徵點檢測算子源碼,還有些其它算子的源碼或二進制文件。

http://www.vision.ee.ethz.ch/~bleibe/code/ism.html

隱式形狀模型(ISM)項目主頁,做者Bastian Leibe提供了linux下運行的二進制文件。

http://www.di.ens.fr/~laptev/download.html#stip

Ivan Laptev牛人主頁中的STIP特徵點檢測code,可是也只是有二進制文件,無源碼。該特徵點在行爲識別中該特徵點很是有名。

http://ai.stanford.edu/~quocle/

斯坦福大學Quoc V.Le主頁,上有它2011年行爲識別文章的代碼。

 

 

 

 

開源軟件:

http://mloss.org/software/

一些ML開源軟件在這裏基本均可以搜到,有上百個。

https://github.com/myui/hivemall

Scalable machine learning library for Hive/Hadoop.

http://scikit-learn.org/stable/

 

基於python的機器學習開源軟件,文檔寫得不錯。

 

 

 

 

挑戰賽:

http://www.chioka.in/kaggle-competition-solutions/

kaggle一些挑戰賽的code. 

 

 

 

 

公開課:

網易公開課,國內作得很不錯的公開課,翻譯了一些國外出名的公開課教程,與國外公開課平臺coursera有合做。

coursera在線教育網上公開課,很新,有個郵箱註冊便可學習,有很多課程,且有對應的練習,特別是編程練習,超讚。

斯坦福網上公開課連接,有統計學習,凸優化等課程。

udacity公開課程下載連接,其實速度還能夠。裏面有很多好教程。

機器學習公開課的鏈接,有很多課。

 

 

 

 

   在最近的學習中,看到一些有用的資源就記下來了,如今總結一下,歡迎補充! 
機器視覺開源代碼合集 
計算機視覺算法與代碼集錦 
計算機視覺的一些測試數據集和源碼站點 
SIFT官網 
SURF PCA-SIFT and SIFT 開源代碼 總結 
經常使用圖像數據集:標註、檢索 
KTH-TIPS2 image dataset 
視頻中行爲識別公開數據庫彙總 
MSR Action Recognition Datasets and Codes 
Sparse coding simulation software 
稀疏表示 
Deep Learning源代碼收集-持續更新 
Training a deep autoencoder or a classifier on MNIST digits 
Charlie Tang 
本文實現了09年CVPR的文章 
Kaggle 機器學習競賽冠軍及優勝者的源代碼彙總 
Feature_detection 
機器學習視頻公開課 
機器學習的最佳入門學習資源 
http://blog.jobbole.com/82630/ 
國外程序員整理的機器學習資源大全 
一些下載資源的連接 
Some Useful Links 
A Library for Large Linear Classification

 

 

 

 

 

 

 

 

 

 

本博文轉自

http://blog.csdn.net/huixingshao/article/details/71406084

https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#t-cnn

本人經常使用資源整理(ing...)

做者:好記性不如爛筆頭!
出處:http://www.cnblogs.com/zlslch/

本文版權歸做者和博客園共有,歡迎轉載,但未經做者贊成必須保留此段聲明,且在文章頁面明顯位置給出原文連接,不然保留追究法律責任的權利。

 
相關文章
相關標籤/搜索