Pig自學

pig自學,這是整理的Pig的基本語法,結合的書是hadoop權威指南第三版,後續,將結合場景進一步進行自學Pig(真的很想吐槽Pig。。。)sql

Hadoop權威指南第三版,426頁數據庫

pig簡介
pig是hadoop上層的衍生架構,與hive相似。對比hive(hive相似sql,是一種聲明式的語言),pig是一種過程語言,相似於存儲過程一步一步得進行數據轉化。

pig簡單操做
     1.從文件導入數據
          1)Mysql (Mysql須要先建立表).
             CREATE TABLE TMP_TABLE(USER VARCHAR(32),AGE INT,IS_MALE BOOLEAN);
             CREATE TABLE TMP_TABLE_2(AGE INT,OPTIONS VARCHAR(50));   -- 用於Join
             LOAD DATA LOCAL INFILE '/tmp/data_file_1'  INTO TABLE TMP_TABLE ;
             LOAD DATA LOCAL INFILE '/tmp/data_file_2'  INTO TABLE TMP_TABLE_2;
          2)Pig
              tmp_table = LOAD '/tmp/data_file_1' USING PigStorage('\t') AS (user:chararray, age:int,is_male:int);
              tmp_table_2= LOAD '/tmp/data_file_2' USING PigStorage('\t') AS (age:int,options:chararray);

      2.查詢整張表
         1)Mysql
            SELECT * FROM TMP_TABLE;
         2)Pig
            DUMP tmp_table;
      3. 查詢前50行
         1)Mysql
            SELECT * FROM TMP_TABLE LIMIT 50;
         2)Pig
             tmp_table_limit = LIMIT tmp_table 50;
             DUMP tmp_table_limit; 
    4.查詢某些列
        1)Mysql
            SELECT USER FROM TMP_TABLE;
        2)Pig
            tmp_table_user = FOREACH tmp_table GENERATE user;
            DUMP tmp_table_user;

    5. 給列取別名
        1)Mysql
           SELECT USER AS USER_NAME,AGE AS USER_AGE FROM TMP_TABLE;
        2)Pig
           tmp_table_column_alias = FOREACH tmp_table GENERATE user AS user_name,age AS user_age;
           DUMP tmp_table_column_alias; 

    6.排序
        1)Mysql
           SELECT * FROM TMP_TABLE ORDER BY AGE;
        2)Pig
            tmp_table_order = ORDER tmp_table BY age ASC;
            DUMP tmp_table_order;

     7.條件查詢
        1)Mysql
            SELECT * FROM TMP_TABLE WHERE AGE>20;
        2) Pig
            tmp_table_where = FILTER tmp_table by age > 20;
            DUMP tmp_table_where;

     8.內鏈接Inner Join
        1)Mysql
           SELECT * FROM TMP_TABLE A JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
        2)Pig
            tmp_table_inner_join = JOIN tmp_table BY age,tmp_table_2 BY age;
            DUMP tmp_table_inner_join;
    9.左鏈接Left  Join
       1)Mysql
           SELECT * FROM TMP_TABLE A LEFT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
       2)Pig
          tmp_table_left_join = JOIN tmp_table BY age LEFT OUTER,tmp_table_2 BY age;
          DUMP tmp_table_left_join;
    10.右鏈接Right Join
         1)Mysql
            SELECT * FROM TMP_TABLE A RIGHT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
         2)Pig
            tmp_table_right_join = JOIN tmp_table BY age RIGHT OUTER,tmp_table_2 BY age;
            DUMP tmp_table_right_join;
    11.全鏈接Full Join
         1)Mysql
            SELECT * FROM TMP_TABLE A  JOIN TMP_TABLE_2 B ON A.AGE=B.AGE
                UNION SELECT * FROM TMP_TABLE A LEFT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE
                UNION SELECT * FROM TMP_TABLE A RIGHT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
         2)Pig
            tmp_table_full_join = JOIN tmp_table BY age FULL OUTER,tmp_table_2 BY age;
            DUMP tmp_table_full_join;

     12.同時對多張表交叉查詢
          1)Mysql
             SELECT * FROM TMP_TABLE,TMP_TABLE_2;
          2)Pig
             tmp_table_cross = CROSS tmp_table,tmp_table_2;
             DUMP tmp_table_cross;

     13.分組GROUP BY
         1)Mysql
            SELECT * FROM TMP_TABLE GROUP BY IS_MALE;
         2)Pig
            tmp_table_group = GROUP tmp_table BY is_male;
            DUMP tmp_table_group;
      14.分組並統計
           1)Mysql
             SELECT IS_MALE,COUNT(*) FROM TMP_TABLE GROUP BY IS_MALE;
           2)Pig
              tmp_table_group_count = GROUP tmp_table BY is_male;
              tmp_table_group_count = FOREACH tmp_table_group_count GENERATE group,COUNT($1);
              DUMP tmp_table_group_count;

      15.查詢去重DISTINCT
           1)MYSQL
              SELECT DISTINCT IS_MALE FROM TMP_TABLE;
           2)Pig
              tmp_table_distinct = FOREACH tmp_table GENERATE is_male;
              tmp_table_distinct = DISTINCT tmp_table_distinct;
              DUMP  tmp_table_distinct;


---------------------------------------------------------------------------------------------------------------------------------------------------

上面簡單操做,下面須要進一步瞭解pig支持的內容:
pig支持數據類型
double > float > long > int > bytearray
tuple|bag|map|chararray > bytearray
double float long int chararray bytearray都至關於pig的基本類型
tuple至關於數組 ,可是能夠類型不一,舉例('dirkzhang','dallas',41)
Bag至關於tuple的一個集合,舉例{('dirk',41),('kedde',2),('terre',31)},在group的時候會生成bag
Map至關於哈希表,key爲chararray,value爲任意類型,例如['name'#dirk,'age'#36,'num'#41
nulls 表示的不僅是數據不存在,他更表示數據是unkown

pig latin語法

1:load
LOAD 'data' [USING function] [AS schema];
       例如:
      load = LOAD 'sql://{SELECT MONTH_ID,DAY_ID,PROV_ID FROM zb_d_bidwmb05009_010}'    USING com.xxxx.dataplatform.bbdp.geniuspig.VerticaLoader('oracle','192.168.6.5','dev','1522','vbap','vbap','1') AS (MONTH_ID:chararray,DAY_ID:chararray,PROV_ID:chararray);

Table = load ‘url’ as (id,name…..);    //table和load之間除了等號外 還必須有個空格 否則會出錯,url必定要帶引號,且只能是單引號。

2:filter
       alias = FILTER alias BY expression;
       Table = filter Table1 by + A; //A能夠是 id > 10;not name matches ‘’,is not null 等,能夠用and  和or鏈接各條件
       例如:
       filter = filter load20 by ( MONTH_ID == '1210' and  DAY_ID == '18' and  PROV_ID == '010' );


3:group
alias = GROUP alias { ALL | BY expression} [, alias ALL | BY expression …] [USING 'collected' | 'merge'] [PARTITION BY partitioner] [PARALLEL n];
          pig的分組,不只是數據上的分組,在數據的schema形式上也進行分組爲groupcolumn:bag
         Table3 = group Table2 by id;也能夠Table3 = group Table2 by (id,name);括號必須加
         可使用ALL實現對全部字段的分組

4:foreach
alias = FOREACH alias GENERATE expression [AS schema] [expression [AS schema]….];

alias = FOREACH nested_alias {
alias = {nested_op | nested_exp}; [{alias = {nested_op | nested_exp}; …]
GENERATE expression [AS schema] [expression [AS schema]….]
};

通常跟generate一塊使用
         Table = foreach Table generate (id,name);括號可加可不加。
avg = foreach Table generate group, AVG(age);  MAX ,MIN..

在進行數據過濾時,建議儘早使用foreach generate將多餘的數據過濾掉,減小數據交換

5:join
Inner  join Syntax
alias = JOIN alias BY {expression|'('expression [, expression …]')'} (, alias BY {expression|'('expression [, expression …]')'} …) [USING 'replicated' | 'skewed' | 'merge' | 'merge-sparse'] [PARTITION BY partitioner] [PARALLEL n];
Outer join Syntax
alias = JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY right-alias-column [USING 'replicated' | 'skewed' | 'merge'] [PARTITION BY partitioner] [PARALLEL n];


     join/left join / right join
daily = load 'A' as (id,name, sex);
divs  = load 'B' as (id,name, sex);

join
jnd   = join daily by (id, name), divs by (id, name);       

left join
jnd   = join daily by (id, name) left outer, divs by (id, name);
也能夠同時多個變量,但只用於inner join
A = load 'input1' as (x, y);
B = load 'input2' as (u, v);
C = load 'input3' as (e, f);
alpha = join A by x, B by u, C by e;

6: union
alias = UNION [ONSCHEMA] alias, alias [, alias …];

union 至關與sql中的union,但與sql不通的是pig中的union能夠針對兩個不一樣模式的變量:若是兩個變量模式相同,那麼union後的變量模式與 變量的模式同樣;若是一個變量的模式能夠由另外一各變量的模式強制類型轉換,那麼union後的變量模式與轉換後的變量模式相同;不然,union後的變量 沒有模式。

A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:float);
C = union A, B;
describe C;

C: {x: int,y: float}

A = load 'input1' as (x:double, y:float);
B = load 'input2' as (x:int, y:double);
C = union A, B;
describe C;
C: {x: double,y: double}

A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:chararray);
C = union A, B;
describe C;
Schema for C unknown.

注意:在pig 1.0中 執行不了最後一種union。

若是須要對兩個具備不通列名的變量union的話,可使用onschema關鍵字
A = load 'input1' as (w: chararray, x:int, y:float);
B = load 'input2' as (x:int, y:double, z:chararray);
C = union onschema A, B;
describe C;
C: {w: chararray,x: int,y: double,z: chararray}

join和union以後alias的別名會變

7:Dump
     dump alias
用於在屏幕上顯示數據。

8:Order by
alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] } [PARALLEL n];
         A = order Table by id desc;

9:distinct
         A = distinct alias;

10:limit
         A = limit alias 10;

11:sample
SAMPLE alias size;

隨機抽取指定比例(0到1)的數據。
some = sample divs 0.1;

13:cross
alias = CROSS alias, alias [, alias …] [PARTITION BY partitioner] [PARALLEL n];

將多個數據集中的數據按照字段名進行同值組合,造成笛卡爾積。
--cross.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,date:chararray, open:float, high:float, low:float,
close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,date:chararray, dividends:float);
tonsodata = cross daily, divs parallel 10;


15:split
Syntax
SPLIT alias INTO alias IF expression, alias IF expression [, alias IF expression …] [, alias OTHERWISE];

A = LOAD 'data' AS (f1:int,f2:int,f3:int);
DUMP A;
(1,2,3)
(4,5,6)
(7,8,9)
SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;
(1,2,3)
(4,5,6)

DUMP Y;
(4,5,6)

DUMP Z;
(1,2,3)
(7,8,9)

16:store
         Store  … into … Using…


pig在別名維護上:
一、join
如e = join d by name,b by name;
    g = foreach e generate $0 as one:chararray, $1 as two:int, $2 as      three:chararray,$3 asfour:int;
    他生成的schemal:

        e: {d::name: chararray,d::position: int,b::name: chararray,b::age: int}

g: {one: chararray,two: int,three: chararray,four: int}
二、group
   B = GROUP A BY age;

----------------------------------------------------------------------
| B     | group: int | A: bag({name: chararray,age: int,gpa: float}) |
----------------------------------------------------------------------
|       | 18         | {(John, 18, 4.0), (Joe, 18, 3.8)}             |
|       | 20         | {(Bill, 20, 3.9)}                             |
----------------------------------------------------------------------
(18,{(John,18,4.0F),(Joe,18,3.8F)})


pig udf自定義
pig支持嵌入user defined function,一個簡單的udf 繼承於evalFunc,一般用在filter,foreach中


----------------------------------------------------------------------------------------------------------------------------------------------------

若是咱們知道nosql和傳統數據庫是有差異的,那麼他們的都支持什麼運算符和函數

 


 


4.6 Retional operators
首先編寫兩個數據文件A:

0,1,2

1,3,4
數據文件B:

0,5,2

1,7,8
運行pig:
xuqiang@ubuntu:~/hadoop/src/pig/pig-0.8.1/tutorial/pigtmp$ pig -x local

2011-06-05 18:46:54,039 [main] INFO  org.apache.pig.Main - Logging error messages to: /home/xuqiang/hadoop/src/pig/pig-0.8.1/tutorial/pigtmp/pig_1307324814030.log
2011-06-05 18:46:54,324 [main] INFO  org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system at: file:///
grunt> 
加載數據A:

grunt> a = load 'A' using PigStorage(',') as (a1:int, a2:int, a3:int);

加載數據B:
grunt> b = load 'B' using PigStorage(',') as (b1:int, b2:int, b3:int);

求a,b的並集:
grunt> c = union a, b;

grunt> dump c;    

(0,5,2)

(1,7,8)
(0,1,2)
(1,3,4)
將c分割爲d和e,其中d的第一列數據值爲0,e的第一列的數據爲1($0表示數據集的第一列):

grunt> split c into d if $0 == 0, e if $0 == 1;

查看d:
grunt> dump d;   

(0,1,2)

(0,5,2)
查看e:
(1,3,4)

(1,7,8)
選擇c中的一部分數據:

grunt> f = filter c by $1 > 3;
查看數據f:
grunt> dump f;

(0,5,2)
(1,7,8)
對數據進行分組:
grunt> g = group c by $2;
查看g:

grunt> dump g;

(2,{(0,1,2),(0,5,2)})

(4,{(1,3,4)})
(8,{(1,7,8)})
固然也可以將全部的元素集合到一塊兒:
grunt> h = group c all;

grunt> dump h;  
(all,{(0,1,2),(1,3,4),(0,5,2),(1,7,8)})

查看h中元素個數:
grunt> i = foreach h generate COUNT($1);

查看元素個數:
grunt> dump i;

這裏可能出現Could not resolve counter using imported: [, org.apache.pig.built in., org.apache.pig.impl.builtin. ]的狀況,這是須要使用register命令來註冊pig對應的jar版本。

接下倆試一下jon操做:

grunt> j = join a by $2, b by $2;
該操做相似於sql中的連表查詢,這是的條件是$2 == $2。
取出c的第二列$1和$1 * $2,將這兩列保存在k中:

grunt> k = foreach c generate $1, $1 * $2;

查看k的內容:
grunt> dump k; 

(5,10)

(7,56)
(1,2)
(3,12)express

相關文章
相關標籤/搜索