選擇合適的垃圾回收算法:
串行收集器:適合單機處理機器也可用在小數據量的多機處理器上
使用方式:-XX:+UserSerialGC打開
並行收集器:
對年輕代進行並行垃圾回收能夠減小垃圾回收時間,使用再多機器處理
使用方式:-XX:UsePArallelGC打開
JavaSE6.0以後增長能夠對老年代進行並行收集。若是年老代不使用併發收集的話,默認是使用單線程進行垃圾回收,所以會制約擴展能力。 使用-XX:+UseParallelOldGC打開。
使用-XX:ParallelGCThreads=<N>設置並行垃圾回收的線程數。此值能夠設置與機器處理器數量相等
此收集器能夠進行以下配置:
最大垃圾回收暫停:指定垃圾回收時的最長暫停時間,經過-XX:MaxGCPauseMillis=<N>指定。<N> 爲毫秒.若是指定了此值的話,堆大小和垃圾回收相關參數會進行調整以達到指定值。設定此值可能會 減小應用的吞吐量。
吞吐量:吞吐量爲垃圾回收時間與非垃圾回收時間的比值,經過-XX:GCTimeRatio=<N>來設定,公式 爲1/(1+N)。例如,-XX:GCTimeRatio=19時,表示5%的時間用於垃圾回收。默認狀況爲99,即 1%的時間用於垃圾回收。
併發收集器:
能夠保證大部分工做都併發進行(應用不中止),垃圾回收只暫停不多的時間,此收集器適合對響應時間要求 比較高的中、大規模應用。使用-XX:+UseConcMarkSweepGC打開。
併發收集器主要減小年老代的暫停時間,他在應用不中止的狀況下使用獨立的垃圾回收線程,跟蹤可達對 象。在每一個年老代垃圾回收週期中,在收集初期併發收集器 會對整個應用進行簡短的暫停,在收集中還會再暫 停一次。第二次暫停會比第一次稍長,在此過程當中多個線程同時進行垃圾回收工做。
併發收集器使用處理器換來短暫的停頓時間。在一個N個處理器的系統上,併發收集部分使用K/N個可用處理 器進行回收,通常狀況下1<=K<=N/4。
小結
串行處理器:
--適用狀況:數據量比較小(100M左右);單處理器下而且對響應時間無要求的應用。 --缺點:只能用於小型應用
並行處理器:
--適用狀況:「對吞吐量有高要求」,多CPU、對應用響應時間無要求的中、大型應用。舉例:後臺處理、科學 計算。 --缺點:垃圾收集過程當中應用響應時間可能加長
併發處理器:
--適用狀況:「對響應時間有高要求」,多CPU、對應用響應時間有較高要求的中、大型應用。舉例:Web服 務器/應用服務器、電信交換、集成開發環境。 (主要關注)
分代垃圾算法的優化:
堆大小設置
年輕代的設置很關鍵
JVM中最大堆大小有三方面限制:相關操做系統的數據模型(32-bt仍是64-bit)限制;系統的可用虛擬內存限 制;系統的可用物理內存限制。32位系統下,通常限制在1.5G~2G;64爲操做系統對內存無限制。在 Windows Server 2003 系統,3.5G物理內存,JDK5.0下測試,最大可設置爲1478m。
典型設置:
java -Xmx3550m -Xms3550m -Xmn2g –Xss128k
-Xmx3550m:設置JVM最大可用內存爲3550M。
-Xms3550m:設置JVM促使內存爲3550m。此值能夠設置與-Xmx相同,以免每次垃圾回收完成 後JVM從新分配內存。
-Xmn2g:設置年輕代大小爲2G。整個堆大小=年輕代大小 + 年老代大小 + 持久代大小。持久代通常 固定大小爲64m,因此增大年輕代後,將會減少年老代大小。此值對系統性能影響較大,Sun官方推 薦配置爲整個堆的3/8。
-Xss128k:設置每一個線程的堆棧大小。JDK5.0之後每一個線程堆棧大小爲1M,之前每一個線程堆棧大小 爲256K。更具應用的線程所需內存大小進行調整。在相同物理內存下,減少這個值能生成更多的線 程。可是操做系統對一個進程內的線程數仍是有限制的,不能無限生成,經驗值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:設置年輕代(包括Eden和兩個Survivor區)與年老代的比值(除去持久代)。設 置爲4,則年輕代與年老代所佔比值爲1:4,年輕代佔整個堆棧的1/5
http://pengjiaheng.javaeye.com 1.8 JVM調優總結(七)-典型配置舉例1
第 26 / 51 頁
-XX:SurvivorRatio=4:設置年輕代中Eden區與Survivor區的大小比值。設置爲4,則兩個Survivor 區與一個Eden區的比值爲2:4,一個Survivor區佔整個年輕代的1/6
-XX:MaxPermSize=16m:設置持久代大小爲16m。
-XX:MaxTenuringThreshold=0:設置垃圾最大年齡。若是設置爲0的話,則年輕代對象不通過 Survivor區,直接進入年老代。對於年老代比較多的應用,能夠提升效率。若是將此值設置爲一個較大 值,則年輕代對象會在Survivor區進行屢次複製,這樣能夠增長對象再年輕代的存活時間,增長在年輕 代即被回收的概論。
吞吐量優先的並行收集器
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC XX:ParallelGCThreads=20
響應時間優先的併發收集器
如上文所述,併發收集器主要是保證系統的響應時間,減小垃圾收集時的停頓時間。適用於應用服務器、電信 領域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
常見配置彙總
堆設置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:設置年輕代大小
-XX:NewRatio=n:設置年輕代和年老代的比值。如:爲3,表示年輕代與年老代比值爲1:3,年輕代佔整個年 輕代年老代和的1/4
-XX:SurvivorRatio=n:年輕代中Eden區與兩個Survivor區的比值。注意Survivor區有兩個。如:3,表示 Eden:Survivor=3:2,一個Survivor區佔整個年輕代的1/5
-XX:MaxPermSize=n:設置持久代大小
收集器設置
-XX:+UseSerialGC:設置串行收集器
-XX:+UseParallelGC:設置並行收集器
-XX:+UseParalledlOldGC:設置並行年老代收集器
-XX:+UseConcMarkSweepGC:設置併發收集器
垃圾回收統計信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
並行收集器設置
-XX:ParallelGCThreads=n:設置並行收集器收集時使用的CPU數。並行收集線程數。
-XX:MaxGCPauseMillis=n:設置並行收集最大暫停時間
-XX:GCTimeRatio=n:設置垃圾回收時間佔程序運行時間的百分比。公式爲1/(1+n)
併發收集器設置
-XX:+CMSIncrementalMode:設置爲增量模式。適用於單CPU狀況。
-XX:ParallelGCThreads=n:設置併發收集器年輕代收集方式爲並行收集時,使用的CPU數。並行收集線程 數。
總結:
年老代大小選擇
響應時間優先的應用:年老代使用併發收集器,因此其大小須要當心設置,通常要考慮併發會話率和會話持續 時間等一些參數。若是堆設置小了,能夠會形成內存碎片、高回收頻率以及應用暫停而使用傳統的標記清除方 式;若是堆大了,則須要較長的收集時間。最優化的方案,通常須要參考如下數據得到:
1. 併發垃圾收集信息
2. 持久代併發收集次數
3. 傳統GC信息
4. 花在年輕代和年老代回收上的時間比例
減小年輕代和年老代花費的時間,通常會提升應用的效率
吞吐量優先的應用
通常吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代。緣由是,這樣能夠儘量回收掉大部分短 期對象,減小中期的對象,而年老代盡存放長期存活對象。
較小堆引發的碎片問題
由於年老代的併發收集器使用標記、清除算法,因此不會對堆進行壓縮。當收集器回收時,他會把相鄰的空間 進行合併,這樣能夠分配給較大的對象。可是,當堆空間較小時,運行一段時間之後,就會出現「碎片」,如 果併發收集器找不到足夠的空間,那麼併發收集器將會中止,而後使用傳統的標記、清除方式進行回收。若是 出現「碎片」,可能須要進行以下配置:
1. -XX:+UseCMSCompactAtFullCollection:使用併發收集器時,開啓對年老代的壓縮。
2. -XX:CMSFullGCsBeforeCompaction=0:上面配置開啓的狀況下,這裏設置多少次Full GC後,對年老 代進行壓縮