LeetCode 215. Kth Largest Element in an Array

https://leetcode.com/problems/kth-largest-element-in-an-array/html

Mediumpython

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.ios

For example,
Given [3,2,1,5,6,4] and k = 2, return 5.算法

Note: 
You may assume k is always valid, 1 ≤ k ≤ array's length.api


  • 數組排序題。
  • 第一種解法,最簡單的用STL sort排序,由於是升序排列,因此nums[n - K]就是第K大的元素。
    • sort - C++ Reference
      • http://www.cplusplus.com/reference/algorithm/sort/
  • 第二種解法,用快排中的分治方法。由於快排中每一趟排序以後能找出第pos大的元素,因此K趟排序就能找出第K大的元素。按照從大到小排序,一趟排序以後,若是pos < K,那麼Kth在pos右邊區間,反之則在pos左邊區間。時間複雜度O(N),最壞狀況在已經排好序的狀況下爲O(N^2)。
    • [Data Structure & Algorithm] 八大排序算法 - Poll的筆記 - 博客園
      • http://www.cnblogs.com/maybe2030/p/4715042.html#_label5
  • 第三種解法能夠用STL priority_queue。由於優先隊列實際上用到了最大堆,默認狀況下top返回最大元素,K次循環就能夠找到第K大的元素。
    • priority_queue - C++ Reference
      • http://www.cplusplus.com/reference/queue/priority_queue/
  • 第四種解法能夠用STL multiset。多元集合默認狀況下按升序排列,因此維護一個K個元素的集合,begin()就是第K大的元素。
    • multiset - C++ Reference
      • http://www.cplusplus.com/reference/set/multiset/
  • 第五種解法能夠用堆排序。
    • Kth Largest Element in an Array - LeetCode
      • https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60309/4-C++-Solutions-using-Partition-Max-Heap-priority_queue-and-multiset-respectively
  1 //
  2 //  main.cpp
  3 //  LeetCode
  4 //
  5 //  Created by Hao on 2017/3/16.
  6 //  Copyright © 2017年 Hao. All rights reserved.
  7 //
  8 
  9 #include <iostream>
 10 #include <vector>
 11 #include <queue>
 12 #include <set>
 13 using namespace std;
 14 
 15 class Solution {
 16 public:
 17     // STL sort
 18     int findKthLargest(vector<int>& nums, int k) {
 19         sort(nums.begin(), nums.end()); // STL sort in ascending order
 20         return nums.at(nums.size() - k);
 21     }
 22     
 23     // Divide and Conquer
 24     int findKthLargest2(vector<int>& nums, int k) {
 25         int l = 0, r = nums.size() - 1;
 26         
 27         while (true) {
 28             int pos = partition(nums, l, r); // one time quick sort
 29             
 30             if (pos == k - 1) // the k-th largest key
 31                 return nums.at(k - 1);
 32             else if (pos < k - 1) // in the right partition of pos
 33                 l = pos + 1;
 34             else // in the left partition of pos
 35                 r = pos - 1;
 36         }
 37     }
 38     
 39     int partition(vector<int> & nums, int left, int right) {
 40         int i = left, j = right, pivot = nums.at(left); // pivot key
 41         
 42         while (i < j) {
 43             while (i < j && nums.at(j) <= pivot) -- j; // scan from right to left
 44             if (i < j) nums.at(i ++) = nums.at(j); // place nums[j]
 45             
 46             while (i < j && nums.at(i) >= pivot) ++ i; // scan from left to right
 47             if (i < j) nums.at(j --) = nums.at(i); // place nums[i]
 48         }
 49         
 50         nums.at(i) = pivot; // place pivot key - the (i+1)-th largest key
 51         
 52         return i;
 53     }
 54     
 55     // priority_queue
 56     int findKthLargest3(vector<int>& nums, int k) {
 57         priority_queue<int> pq(nums.begin(), nums.end());
 58         
 59         for (int i = 0; i < k - 1; i ++)
 60             pq.pop(); // remove k-1 largest elements
 61         
 62         return pq.top(); // Kth largest element
 63     }
 64 
 65     // multiset
 66     int findKthLargest4(vector<int>& nums, int k) {
 67         multiset<int>   mset;
 68         
 69         for (int i = 0; i < nums.size(); ++ i) {
 70             mset.insert(nums.at(i));
 71             
 72             if (mset.size() > k)
 73                 mset.erase(mset.begin()); // erase the element < Kth largest element
 74         }
 75         
 76         return *mset.begin(); // Kth largest element
 77     }
 78 };
 79 
 80 int main(int argc, char* argv[])
 81 {
 82     Solution    testSolution;
 83     
 84     vector<vector<int>>     aInputs = {{3,2,1,5,6,4}, {1,2,3,4,5}, {10,9,8,7,6}};
 85     vector<int>             kInputs = {2, 4, 2};
 86     int                     result;
 87     
 88     /*
 89      5
 90      2
 91      9
 92      */
 93     for (auto i = 0; i < aInputs.size(); ++ i) {
 94         result = testSolution.findKthLargest(aInputs[i], kInputs[i]);
 95         cout << result << endl;
 96         result = testSolution.findKthLargest2(aInputs[i], kInputs[i]);
 97         cout << result << endl;
 98         result = testSolution.findKthLargest3(aInputs[i], kInputs[i]);
 99         cout << result << endl;
100         result = testSolution.findKthLargest4(aInputs[i], kInputs[i]);
101         cout << result << endl;
102     }
103     
104     return 0;
105 }
View Code

 1 class Solution:
 2     # sorted()
 3     def findKthLargest(self, nums: List[int], k: int) -> int:
 4         return sorted(nums, reverse=True)[k - 1]
 5             
 6     # heapq.nlargest()
 7     def findKthLargest2(self, nums: List[int], k: int) -> int:
 8         return heapq.nlargest(k, nums)[-1]
 9 
10     # Max Heap with heapq
11     def findKthLargest3(self, nums: List[int], k: int) -> int:
12         nums = [-num for num in nums]
13         
14         heapq.heapify(nums)
15         
16         for _ in range(k):
17             result = heapq.heappop(nums)
18             
19         return -result    
20     
21     # Min Heap with heapq
22     def findKthLargest4(self, nums: List[int], k: int) -> int:
23         min_heap = [-float('inf')] * k
24         
25         # min heap with k elements
26         heapq.heapify(min_heap)
27         
28         for num in nums:
29             if num > min_heap[0]:
30                 heapq.heappop(min_heap)
31                 heapq.heappush(min_heap, num)
32         
33         return min_heap[0]
34     
35     # Divide and Conquer
36     def findKthLargest5(self, nums: List[int], k: int) -> int:
37         _left, _right = 0, len(nums) - 1
38         
39         def partition(nums, left, right):
40             i, j, pivot = left, right, nums[left]
41             
42             while i < j:
43                 while i < j and nums[j] <= pivot: 
44                     j -= 1
45                 if i < j:
46                     nums[i] = nums[j]
47                     i += 1
48                 
49                 while i < j and nums[i] >= pivot:
50                     i += 1
51                 if i < j:
52                     nums[j] = nums[i]
53                     j -= 1
54             
55             nums[i] = pivot
56             
57             return i
58         
59         while True:
60             pos = partition(nums, _left, _right)
61             
62             if pos == k - 1:
63                 return nums[k - 1]
64             elif pos < k - 1:
65                 _left = pos + 1
66             else:
67                 _right = pos - 1
View Python Code
相關文章
相關標籤/搜索