消息隊列中間件是分佈式系統中重要的組件,主要解決應用耦合,異步消息,流量削鋒等問題。實現高性能,高可用,可伸縮和最終一致性架構。是大型分佈式系統不可缺乏的中間件。前端
目前在生產環境,使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。java
如下介紹消息隊列在實際應用中經常使用的使用場景。異步處理,應用解耦,流量削鋒和消息通信四個場景。node
場景說明:用戶註冊後,須要發註冊郵件和註冊短信。傳統的作法有兩種1.串行的方式;2.並行方式。算法
(1)串行方式:將註冊信息寫入數據庫成功後,發送註冊郵件,再發送註冊短信。以上三個任務所有完成後,返回給客戶端數據庫
(2)並行方式:將註冊信息寫入數據庫成功後,發送註冊郵件的同時,發送註冊短信。以上三個任務完成後,返回給客戶端。與串行的差異是,並行的方式能夠提升處理的時間。編程
假設三個業務節點每一個使用50毫秒鐘,不考慮網絡等其餘開銷,則串行方式的時間是150毫秒,並行的時間多是100毫秒。數組
由於CPU在單位時間內處理的請求數是必定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。並行方式處理的請求量是10次(1000/100)。服務器
小結:如以上案例描述,傳統的方式系統的性能(併發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?網絡
引入消息隊列,將不是必須的業務邏輯,異步處理。改造後的架構以下:session
按照以上約定,用戶的響應時間至關因而註冊信息寫入數據庫的時間,也就是50毫秒。註冊郵件,發送短信寫入消息隊列後,直接返回,所以寫入消息隊列的速度很快,基本能夠忽略,所以用戶的響應時間多是50毫秒。所以架構改變後,系統的吞吐量提升到每秒20 QPS。比串行提升了3倍,比並行提升了兩倍。
場景說明:用戶下單後,訂單系統須要通知庫存系統。傳統的作法是,訂單系統調用庫存系統的接口。以下圖:
傳統模式的缺點:
1) 假如庫存系統沒法訪問,則訂單減庫存將失敗,從而致使訂單失敗;
2) 訂單系統與庫存系統耦合;
如何解決以上問題呢?引入應用消息隊列後的方案,以下圖:
訂單系統:用戶下單後,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
庫存系統:訂閱下單的消息,採用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操做。
假如:在下單時庫存系統不能正常使用。也不影響正常下單,由於下單後,訂單系統寫入消息隊列就再也不關心其餘的後續操做了。實現訂單系統與庫存系統的應用解耦。
流量削鋒也是消息隊列中的經常使用場景,通常在秒殺或團搶活動中使用普遍。
應用場景:秒殺活動,通常會由於流量過大,致使流量暴增,應用掛掉。爲解決這個問題,通常須要在應用前端加入消息隊列。
能夠控制活動的人數;
能夠緩解短期內高流量壓垮應用;
用戶的請求,服務器接收後,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
秒殺業務根據消息隊列中的請求信息,再作後續處理。
日誌處理是指將消息隊列用在日誌處理中,好比Kafka的應用,解決大量日誌傳輸的問題。架構簡化以下:
日誌採集客戶端,負責日誌數據採集,定時寫受寫入Kafka隊列;
Kafka消息隊列,負責日誌數據的接收,存儲和轉發;
日誌處理應用:訂閱並消費kafka隊列中的日誌數據;
如下是新浪kafka日誌處理應用案例:
轉自(http://cloud.51cto.com/art/201507/484338.htm)
(1)Kafka:接收用戶日誌的消息隊列。
(2)Logstash:作日誌解析,統一成JSON輸出給Elasticsearch。
(3)Elasticsearch:實時日誌分析服務的核心技術,一個schemaless,實時的數據存儲服務,經過index組織數據,兼具強大的搜索和統計功能。
(4)Kibana:基於Elasticsearch的數據可視化組件,超強的數據可視化能力是衆多公司選擇ELK stack的重要緣由。
消息通信是指,消息隊列通常都內置了高效的通訊機制,所以也能夠用在純的消息通信。好比實現點對點消息隊列,或者聊天室等。
點對點通信:
客戶端A和客戶端B使用同一隊列,進行消息通信。
聊天室通信:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發佈和接收。實現相似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發佈訂閱模式。模型爲示意圖,供參考。
消息隊列採用高可用,可持久化的消息中間件。好比Active MQ,Rabbit MQ,Rocket Mq。
(1)應用將主幹邏輯處理完成後,寫入消息隊列。消息發送是否成功能夠開啓消息的確認模式。(消息隊列返回消息接收成功狀態後,應用再返回,這樣保障消息的完整性)
(2)擴展流程(發短信,配送處理)訂閱隊列消息。採用推或拉的方式獲取消息並處理。
(3)消息將應用解耦的同時,帶來了數據一致性問題,能夠採用最終一致性方式解決。好比主數據寫入數據庫,擴展應用根據消息隊列,並結合數據庫方式實現基於消息隊列的後續處理。
分爲Zookeeper註冊中心,日誌收集客戶端,Kafka集羣和Storm集羣(OtherApp)四部分組成。
Zookeeper註冊中心,提出負載均衡和地址查找服務;
日誌收集客戶端,用於採集應用系統的日誌,並將數據推送到kafka隊列;
Kafka集羣:接收,路由,存儲,轉發等消息處理;
Storm集羣:與OtherApp處於同一級別,採用拉的方式消費隊列中的數據;
4、JMS消息服務
講消息隊列就不得不提JMS 。JMS(JAVA Message Service,java消息服務)API是一個消息服務的標準/規範,容許應用程序組件基於JavaEE平臺建立、發送、接收和讀取消息。它使分佈式通訊耦合度更低,消息服務更加可靠以及異步性。
在EJB架構中,有消息bean能夠無縫的與JM消息服務集成。在J2EE架構模式中,有消息服務者模式,用於實現消息與應用直接的解耦。
在JMS標準中,有兩種消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
P2P模式包含三個角色:消息隊列(Queue),發送者(Sender),接收者(Receiver)。每一個消息都被髮送到一個特定的隊列,接收者從隊列中獲取消息。隊列保留着消息,直到他們被消費或超時。
P2P的特色
每一個消息只有一個消費者(Consumer)(即一旦被消費,消息就再也不在消息隊列中)
發送者和接收者之間在時間上沒有依賴性,也就是說當發送者發送了消息以後,無論接收者有沒有正在運行,它不會影響到消息被髮送到隊列
接收者在成功接收消息以後需向隊列應答成功
若是但願發送的每一個消息都會被成功處理的話,那麼須要P2P模式。(架構KKQ:466097527,歡迎加入)
包含三個角色主題(Topic),發佈者(Publisher),訂閱者(Subscriber) 。多個發佈者將消息發送到Topic,系統將這些消息傳遞給多個訂閱者。
Pub/Sub的特色
每一個消息能夠有多個消費者
發佈者和訂閱者之間有時間上的依賴性。針對某個主題(Topic)的訂閱者,它必須建立一個訂閱者以後,才能消費發佈者的消息。
爲了消費消息,訂閱者必須保持運行的狀態。
爲了緩和這樣嚴格的時間相關性,JMS容許訂閱者建立一個可持久化的訂閱。這樣,即便訂閱者沒有被激活(運行),它也能接收到發佈者的消息。
若是但願發送的消息能夠不被作任何處理、或者只被一個消息者處理、或者能夠被多個消費者處理的話,那麼能夠採用Pub/Sub模型。
在JMS中,消息的產生和消費都是異步的。對於消費來講,JMS的消息者能夠經過兩種方式來消費消息。
(1)同步
訂閱者或接收者經過receive方法來接收消息,receive方法在接收到消息以前(或超時以前)將一直阻塞;
(2)異步
訂閱者或接收者能夠註冊爲一個消息監聽器。當消息到達以後,系統自動調用監聽器的onMessage方法。
JNDI:Java命名和目錄接口,是一種標準的Java命名系統接口。能夠在網絡上查找和訪問服務。經過指定一個資源名稱,該名稱對應於數據庫或命名服務中的一個記錄,同時返回資源鏈接創建所必須的信息。
JNDI在JMS中起到查找和訪問發送目標或消息來源的做用。(架構KKQ:466097527,歡迎加入)
(1) ConnectionFactory
建立Connection對象的工廠,針對兩種不一樣的jms消息模型,分別有QueueConnectionFactory和TopicConnectionFactory兩種。能夠經過JNDI來查找ConnectionFactory對象。
(2) Destination
Destination的意思是消息生產者的消息發送目標或者說消息消費者的消息來源。對於消息生產者來講,它的Destination是某個隊列(Queue)或某個主題(Topic);對於消息消費者來講,它的Destination也是某個隊列或主題(即消息來源)。
因此,Destination實際上就是兩種類型的對象:Queue、Topic能夠經過JNDI來查找Destination。
(3) Connection
Connection表示在客戶端和JMS系統之間創建的連接(對TCP/IP socket的包裝)。Connection能夠產生一個或多個Session。跟ConnectionFactory同樣,Connection也有兩種類型:QueueConnection和TopicConnection。
(4) Session
Session是操做消息的接口。能夠經過session建立生產者、消費者、消息等。Session提供了事務的功能。當須要使用session發送/接收多個消息時,能夠將這些發送/接收動做放到一個事務中。一樣,也分QueueSession和TopicSession。
(5) 消息的生產者
消息生產者由Session建立,並用於將消息發送到Destination。一樣,消息生產者分兩種類型:QueueSender和TopicPublisher。能夠調用消息生產者的方法(send或publish方法)發送消息。
(6) 消息消費者
消息消費者由Session建立,用於接收被髮送到Destination的消息。兩種類型:QueueReceiver和TopicSubscriber。可分別經過session的createReceiver(Queue)或createSubscriber(Topic)來建立。固然,也能夠session的creatDurableSubscriber方法來建立持久化的訂閱者。
(7) MessageListener
消息監聽器。若是註冊了消息監聽器,一旦消息到達,將自動調用監聽器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一種MessageListener。
深刻學習JMS對掌握JAVA架構,EJB架構有很好的幫助,消息中間件也是大型分佈式系統必須的組件。本次分享主要作全局性介紹,具體的深刻須要你們學習,實踐,總結,領會。
通常商用的容器,好比WebLogic,JBoss,都支持JMS標準,開發上很方便。但免費的好比Tomcat,Jetty等則須要使用第三方的消息中間件。本部份內容介紹經常使用的消息中間件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他們的特色。
ActiveMQ 是Apache出品,最流行的,能力強勁的開源消息總線。ActiveMQ 是一個徹底支持JMS1.1和J2EE 1.4規範的 JMS Provider實現,儘管JMS規範出臺已是好久的事情了,可是JMS在當今的J2EE應用中間仍然扮演着特殊的地位。
ActiveMQ特性以下:
⒈ 多種語言和協議編寫客戶端。語言: Java,C,C++,C#,Ruby,Perl,Python,PHP。應用協議: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 徹底支持JMS1.1和J2EE 1.4規範 (持久化,XA消息,事務)
⒊ 對Spring的支持,ActiveMQ能夠很容易內嵌到使用Spring的系統裏面去,並且也支持Spring2.0的特性
⒋ 經過了常見J2EE服務器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的測試,其中經過JCA 1.5 resource adaptors的配置,可讓ActiveMQ能夠自動的部署到任何兼容J2EE 1.4 商業服務器上
⒌ 支持多種傳送協議:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持經過JDBC和journal提供高速的消息持久化
⒎ 從設計上保證了高性能的集羣,客戶端-服務器,點對點
⒏ 支持Ajax
⒐ 支持與Axis的整合
⒑ 能夠很容易得調用內嵌JMS provider,進行測試
RabbitMQ是流行的開源消息隊列系統,用erlang語言開發。RabbitMQ是AMQP(高級消息隊列協議)的標準實現。支持多種客戶端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用於在分佈式系統中存儲轉發消息,在易用性、擴展性、高可用性等方面表現不俗。
幾個重要概念:
Broker:簡單來講就是消息隊列服務器實體。
Exchange:消息交換機,它指定消息按什麼規則,路由到哪一個隊列。
Queue:消息隊列載體,每一個消息都會被投入到一個或多個隊列。
Binding:綁定,它的做用就是把exchange和queue按照路由規則綁定起來。
Routing Key:路由關鍵字,exchange根據這個關鍵字進行消息投遞。
vhost:虛擬主機,一個broker裏能夠開設多個vhost,用做不一樣用戶的權限分離。
producer:消息生產者,就是投遞消息的程序。
consumer:消息消費者,就是接受消息的程序。
channel:消息通道,在客戶端的每一個鏈接裏,可創建多個channel,每一個channel表明一個會話任務。
消息隊列的使用過程,以下:
(1)客戶端鏈接到消息隊列服務器,打開一個channel。
(2)客戶端聲明一個exchange,並設置相關屬性。
(3)客戶端聲明一個queue,並設置相關屬性。
(4)客戶端使用routing key,在exchange和queue之間創建好綁定關係。
(5)客戶端投遞消息到exchange。
exchange接收到消息後,就根據消息的key和已經設置的binding,進行消息路由,將消息投遞到一個或多個隊列裏。
號稱史上最快的消息隊列,它實際相似於Socket的一系列接口,他跟Socket的區別是:普通的socket是端到端的(1:1的關係),而ZMQ倒是能夠N:M 的關係,人們對BSD套接字的瞭解較多的是點對點的鏈接,點對點鏈接須要顯式地創建鏈接、銷燬鏈接、選擇協議(TCP/UDP)和處理錯誤等,而ZMQ屏蔽了這些細節,讓你的網絡編程更爲簡單。ZMQ用於node與node間的通訊,node能夠是主機或者是進程。
引用官方的說法: 「ZMQ(如下ZeroMQ簡稱ZMQ)是一個簡單好用的傳輸層,像框架同樣的一個socket library,他使得Socket編程更加簡單、簡潔和性能更高。是一個消息處理隊列庫,可在多個線程、內核和主機盒之間彈性伸縮。ZMQ的明確目標是「成爲標準網絡協議棧的一部分,以後進入Linux內核」。如今還未看到它們的成功。可是,它無疑是極具前景的、而且是人們更加須要的「傳統」BSD套接字之上的一 層封裝。ZMQ讓編寫高性能網絡應用程序極爲簡單和有趣。」
特色是:
高性能,非持久化;
跨平臺:支持Linux、Windows、OS X等。
多語言支持; C、C++、Java、.NET、Python等30多種開發語言。
可單獨部署或集成到應用中使用;
可做爲Socket通訊庫使用。
與RabbitMQ相比,ZMQ並不像是一個傳統意義上的消息隊列服務器,事實上,它也根本不是一個服務器,更像一個底層的網絡通信庫,在Socket API之上作了一層封裝,將網絡通信、進程通信和線程通信抽象爲統一的API接口。支持「Request-Reply 「,」Publisher-Subscriber「,」Parallel Pipeline」三種基本模型和擴展模型。
ZeroMQ高性能設計要點:
一、無鎖的隊列模型
對於跨線程間的交互(用戶端和session)之間的數據交換通道pipe,採用無鎖的隊列算法CAS;在pipe兩端註冊有異步事件,在讀或者寫消息到pipe的時,會自動觸發讀寫事件。
二、批量處理的算法
對於傳統的消息處理,每一個消息在發送和接收的時候,都須要系統的調用,這樣對於大量的消息,系統的開銷比較大,zeroMQ對於批量的消息,進行了適應性的優化,能夠批量的接收和發送消息。
三、多核下的線程綁定,無須CPU切換
區別於傳統的多線程併發模式,信號量或者臨界區, zeroMQ充分利用多核的優點,每一個核綁定運行一個工做者線程,避免多線程之間的CPU切換開銷。
Kafka是一種高吞吐量的分佈式發佈訂閱消息系統,它能夠處理消費者規模的網站中的全部動做流數據。 這種動做(網頁瀏覽,搜索和其餘用戶的行動)是在現代網絡上的許多社會功能的一個關鍵因素。 這些數據一般是因爲吞吐量的要求而經過處理日誌和日誌聚合來解決。 對於像Hadoop的同樣的日誌數據和離線分析系統,但又要求實時處理的限制,這是一個可行的解決方案。Kafka的目的是經過Hadoop的並行加載機制來統一線上和離線的消息處理,也是爲了經過集羣機來提供實時的消費。
Kafka是一種高吞吐量的分佈式發佈訂閱消息系統,有以下特性:
經過O(1)的磁盤數據結構提供消息的持久化,這種結構對於即便數以TB的消息存儲也可以保持長時間的穩定性能。(文件追加的方式寫入數據,過時的數據按期刪除)
高吞吐量:即便是很是普通的硬件Kafka也能夠支持每秒數百萬的消息。
支持經過Kafka服務器和消費機集羣來分區消息。
支持Hadoop並行數據加載。
Kafka相關概念
Broker
Kafka集羣包含一個或多個服務器,這種服務器被稱爲broker[5]
Topic
每條發佈到Kafka集羣的消息都有一個類別,這個類別被稱爲Topic。(物理上不一樣Topic的消息分開存儲,邏輯上一個Topic的消息雖然保存於一個或多個broker上但用戶只需指定消息的Topic便可生產或消費數據而沒必要關心數據存於何處)
Partition
Parition是物理上的概念,每一個Topic包含一個或多個Partition.
Producer
負責發佈消息到Kafka broker
Consumer
消息消費者,向Kafka broker讀取消息的客戶端。
Consumer Group
每一個Consumer屬於一個特定的Consumer Group(可爲每一個Consumer指定group name,若不指定group name則屬於默認的group)。
通常應用在大數據日誌處理或對實時性(少許延遲),可靠性(少許丟數據)要求稍低的場景使用。
一、阻塞隊列BlockingQueue take和poll區別?
1)poll(time):取走BlockingQueue裏排在首位的對象,若不能當即取出,則能夠等time參數規定的時間,取不到時返回null;
2)take():取走BlockingQueue裏排在首位的對象,若BlockingQueue爲空,阻塞直到BlockingQueue有新的對象被加入;
二、如何從FutureTask不阻塞獲取結果?
1)get(long,timeout,TimeUnit unit),超時則返回;
2)輪詢,先經過isDone()判斷是否結束,而後調用get();
三、NIO與傳統I/O的區別
1)節約線程,NIO由原來的每一個線程都須要阻塞讀寫變成了由單線程(即Selector)負責處理多個channel註冊(register)的興趣事件(SelectionKey)集合(底層藉助操做系統提供的epoll()),netty bossgroup處理accept鏈接(沒看明白爲何bossgroup設置多個thread的必要性),workergroup處理具體業務流程和數據讀寫
2)NIO提供非阻塞操做
3)傳統I/O 以流的方式處理數據,而 NIO 以塊的方式處理數據,NIO提供bytebuffer,分爲堆內和堆外緩衝區,讀寫時均先放到該緩衝區中,而後由內核經過channel傳輸到對端,堆外緩衝區不走內核,提高了性能
四、list中存放可重複字符串,如何刪除某個字符串?
1)調用iterator相關方法刪除
2)倒刪,防止正序刪除致使的數組重排,index跳過數組元素問題
五、
六、
七、
八、
九、
連接 :
異步隊列 sidekiq 指南 : https://wdxtub.com/2016/07/06/sidekiq-guide/
消息隊列及其模式 : https://www.jianshu.com/p/611cc757b74d
消息隊列 : https://blog.csdn.net/m0_37450089/article/category/7308832
RabbitMQ詳解(一) : http://blog.51cto.com/hmtk520/2050847
RabbitMQ詳解(二) : http://blog.51cto.com/hmtk520/2051211
RabbitMQ詳解(三) : http://blog.51cto.com/hmtk520/2051247
RabbitMQ(四) : http://blog.51cto.com/hmtk520/2051267
Linux安裝ActiveMQ :https://www.liaoxuefeng.com/article/0013738918072162b1c2a36eb0f40e690d3902acf60c8fb000
ZeroMQ源碼解析之yqueue : https://www.jianshu.com/p/2a7c5dfa8c6d
ZeroMQ分享-part2 : https://www.jianshu.com/p/2bc52b686841
ZeroMQ分享-part1 : https://www.jianshu.com/p/2a670e865da0
20條關於Kafka集羣應對高吞吐量的避坑指南 : https://mp.weixin.qq.com/s/O1mGE9vLj6Azy6Z7xgELFg