006.利用eclipse編寫自定義hive udf函數

eclipse編寫自定義hive udf函數

在作日誌分析的過程當中,用到了hadoop框架中的hive,不過有些日誌處理用hive中的函數處理顯得力不從心,就須要用udf來進行擴展處理了 java

1  eclipse中新建java project   hiveudf   而後新建class  package(com.afan)  name(UDFLower) linux

2  添加jar library  hadoop-core-1.1.2.jar(來源hadoop1.1.2)   hive-exec-0.9.0.jar(來源hive-0.9.0)兩個文件到project apache

 

import org.apache.hadoop.hive.ql.exec.UDF;   框架

import org.apache.hadoop.io.Text;   eclipse

  

public class UDFLower extends UDF{   jsp

    public Text evaluate(final Text s){   函數

        if (null == s){   oop

            return null;   測試

        }   lua

        return new Text(s.toString().toLowerCase());  

    }  

}  

4  編譯輸出打包文件爲 udf_hive.jar

第一步:

第二步:

第三步:

第四步:

第五步:

第六步:

5 udf_hive.jar放入配置好的linux系統的文件夾中路徑爲/root/data/udf_hive.jar

6 打開hive命令行測試

   hive> add jar /root/data/udf_hive.jar;

Added udf_hive.jar to class path
Added resource: udf_hive.jar

建立udf函數
hive> create temporary function my_lower as 'UDFLower';   // UDFLower'
表示你的類的地址,例如你有包名:cn.jiang.UDFLower.java,那麼就as後面接cn.jiang.UDFLower,若是沒有包名就直接寫類名'UDFLower'就行

建立測試數據
hive> create table dual (name string);

導入數據文件test.txt

test.txt文件內容爲

WHO

AM

I

HELLO

hive> load data local inpath '/root/data/test.txt' into table dual;

hive> select name from dual;

Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0003, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0003
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0003
2011-05-15 06:46:05,459 Stage-1 map = 0%,  reduce = 0%
2011-05-15 06:46:10,905 Stage-1 map = 100%,  reduce = 0%
2011-05-15 06:46:13,963 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201105150525_0003
OK
WHO
AM
I
HELLO

使用udf函數
hive> select my_lower(name) from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0002, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0002
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0002
2011-05-15 06:43:26,100 Stage-1 map = 0%,  reduce = 0%
2011-05-15 06:43:34,364 Stage-1 map = 100%,  reduce = 0%
2011-05-15 06:43:37,484 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201105150525_0002
OK
who
am
i
hello

經測試成功經過

參考文章http://landyer.iteye.com/blog/1070377

相關文章
相關標籤/搜索