按照下圖的配方,走了一遍源碼。
湊齊PriorityQueue就能夠召喚神龍了。
Ler's go go go!java
/** * Priority queue represented as a balanced binary heap: the two * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The * priority queue is ordered by comparator, or by the elements' * natural ordering, if comparator is null: For each node n in the * heap and each descendant d of n, n <= d. The element with the * lowest value is in queue[0], assuming the queue is nonempty. */ transient Object[] queue; // non-private to simplify nested class access
沒錯這是個數組,爲了更好的理解註釋的含義,請看下面↓。node
滿二叉樹:git
全部的節點都有2個葉子節點,除了最後層葉子節點;github
節點數n和深度d的關係 n=2^d-1;api
第i層上的節點數爲2^(i-1);數組
第n個節點的父節點:n/2,左子節點:2n,右子節點:2n+1;(參考下圖)安全
徹底二叉樹:markdown
有且僅有最底層葉子節點不完整就是徹底二叉樹。(例如:把15去掉)框架
最小堆:less
父節點小於左右子節點的徹底二叉樹。
轉數組:
用數組來存儲二叉樹後(參見下圖)可得,根節點A[0];左子節點a[2n+1];右子節點a[2(n+1)],父節點a[(n-1)/2]。(n爲數組下標,從0開始)
是的,優先隊列的存儲結構大概就是這樣推演而來。
/** * Establishes the heap invariant (described above) in the entire tree, * assuming nothing about the order of the elements prior to the call. */ @SuppressWarnings("unchecked") private void heapify() { for (int i = (size >>> 1) - 1; i >= 0; i--) siftDown(i, (E) queue[i]); } /** * Inserts item x at position k, maintaining heap invariant by * demoting x down the tree repeatedly until it is less than or * equal to its children or is a leaf. * * @param k the position to fill * @param x the item to insert */ private void siftDown(int k, E x) { if (comparator != null) siftDownUsingComparator(k, x); else siftDownComparable(k, x); } @SuppressWarnings("unchecked") private void siftDownComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>)x; int half = size >>> 1; // loop while a non-leaf while (k < half) { int child = (k << 1) + 1; // assume left child is least Object c = queue[child]; int right = child + 1; if (right < size && ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0) c = queue[child = right]; if (key.compareTo((E) c) <= 0) break; queue[k] = c; k = child; } queue[k] = key; } @SuppressWarnings("unchecked") private void siftDownUsingComparator(int k, E x) { int half = size >>> 1; while (k < half) { int child = (k << 1) + 1; //2n + 1,這裏n是下標 Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) // 找出最小子節點 c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) // 父節點小則退出循環,不然進行替換 break; queue[k] = c; k = child; } queue[k] = x; }
這是任意數組最小堆化的過程。若是是一個合格的最小堆,那麼全部的父節點都在數組前半部分,而經過父節點又能獲得左右子節點。所以源碼一上來就「size >>> 1」(至關於除以2),只需對前半部分進行循環處理,使得循環結束後全部父節點均大於左/右子節點。這裏非根父節點會被屢次比較到。heapify()後將獲得上文所說的最小堆數組。
@SuppressWarnings("unchecked") public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0]; E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x); // ! return result; }
poll()的核心也是siftDown,而這裏的「siftDown(0, x);」與以前的「siftDown(i, (E) queue[i]);」不一樣的是,下標0所對應的元素本非x。也就是說,這裏進行了個轉換:把最後queue[s]替換了queue[0]進行新的最小堆數組化。
/** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. Returns {@code true} if and only if this queue contained * the specified element (or equivalently, if this queue changed as a * result of the call). * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { int i = indexOf(o); if (i == -1) return false; else { removeAt(i); return true; } } /** * Removes the ith element from queue. * * Normally this method leaves the elements at up to i-1, * inclusive, untouched. Under these circumstances, it returns * null. Occasionally, in order to maintain the heap invariant, * it must swap a later element of the list with one earlier than * i. Under these circumstances, this method returns the element * that was previously at the end of the list and is now at some * position before i. This fact is used by iterator.remove so as to * avoid missing traversing elements. */ @SuppressWarnings("unchecked") private E removeAt(int i) { // assert i >= 0 && i < size; modCount++; int s = --size; if (s == i) // removed last element queue[i] = null; else { E moved = (E) queue[s]; queue[s] = null; siftDown(i, moved); if (queue[i] == moved) { siftUp(i, moved); if (queue[i] != moved) return moved; } } return null; }
如你所見,remove()也用到了siftDown()(同時還有siftUp(),下面介紹)。這裏 通過siftDown後,若是queue[i] == moved則表示queue[i]的左右子節點都大於moved,即保證了i節點子樹是最小堆,但queue[i]的父節點是否小於moved卻未知,故又進行了siftUp。(圖片來自【2】)
/** * Inserts item x at position k, maintaining heap invariant by * promoting x up the tree until it is greater than or equal to * its parent, or is the root. * * To simplify and speed up coercions and comparisons. the * Comparable and Comparator versions are separated into different * methods that are otherwise identical. (Similarly for siftDown.) * * @param k the position to fill * @param x the item to insert */ private void siftUp(int k, E x) { if (comparator != null) siftUpUsingComparator(k, x); else siftUpComparable(k, x); } @SuppressWarnings("unchecked") private void siftUpComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>) x; while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (key.compareTo((E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = key; } @SuppressWarnings("unchecked") private void siftUpUsingComparator(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = x; }
與之相對的,還有名爲siftUpComparable()/siftUpUsingComparator()的方法。在新增元素時被調用。新增元素放在下標爲size的位置。這裏的down與up指的是被比較對象x的去向。比較後x被賦值給子節點就是down,被賦值給父節點就是up。固然你來寫的時候也可能新增時,從上到下循環遍歷。
PriorityQueue有序;不容許爲null;非線程安全;(PriorityBlockingQueue線程安全);沒有介紹的地方大抵與其餘集合框架類似,如擴容機制等。
優先隊列每次出隊的元素都是優先級最高(權值最小)的元素,經過比較(Comparator或元素自己天然排序)決定優先級。
記得常來複習啊~~~
更多有意思的內容,歡迎訪問筆者小站: rebey.cn