JavaShuo
欄目
標籤
BinaryConnect: Training Deep Neural Networks with binary weights during propagations 論文筆記
時間 2020-12-20
原文
原文鏈接
0 摘要 深度神經網絡在大量任務中取得了最先進的成果。GPU因爲其更快的計算速度,幫助深度網絡實現了這些突破。未來,在訓練和測試時更快的計算速度對於進一步發展,以及能夠在低功耗設備上的消費級別的應用可能至關重要。因此,對深度學習專用硬件的研究和開發展開了新的熱潮。二值權重,即僅限於兩個可能值(例如-1或1)的權重,通過用簡單累加代替許多乘法—累加操作,爲專用DL硬件帶來巨大便利。因爲乘法器
>>阅读原文<<
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
CAP理論是什麼?
-
NoSQL教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Scala 中文亂碼解決
相關標籤/搜索
論文筆記
networks
neural
training
weights
binary
deep
論文
論文閱讀筆記
文筆
MyBatis教程
PHP教程
MySQL教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
>>更多相關文章<<