JavaShuo
欄目
標籤
BinaryConnect: Training Deep Neural Networks with binary weights during propagations 論文筆記
時間 2020-12-20
原文
原文鏈接
0 摘要 深度神經網絡在大量任務中取得了最先進的成果。GPU因爲其更快的計算速度,幫助深度網絡實現了這些突破。未來,在訓練和測試時更快的計算速度對於進一步發展,以及能夠在低功耗設備上的消費級別的應用可能至關重要。因此,對深度學習專用硬件的研究和開發展開了新的熱潮。二值權重,即僅限於兩個可能值(例如-1或1)的權重,通過用簡單累加代替許多乘法—累加操作,爲專用DL硬件帶來巨大便利。因爲乘法器
>>阅读原文<<
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
CAP理論是什麼?
-
NoSQL教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Scala 中文亂碼解決
相關標籤/搜索
論文筆記
networks
neural
training
weights
binary
deep
論文
論文閱讀筆記
文筆
MyBatis教程
PHP教程
MySQL教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
>>更多相關文章<<