JavaShuo
欄目
標籤
BinaryConnect: Training Deep Neural Networks with binary weights during propagations 論文筆記
時間 2020-12-20
原文
原文鏈接
0 摘要 深度神經網絡在大量任務中取得了最先進的成果。GPU因爲其更快的計算速度,幫助深度網絡實現了這些突破。未來,在訓練和測試時更快的計算速度對於進一步發展,以及能夠在低功耗設備上的消費級別的應用可能至關重要。因此,對深度學習專用硬件的研究和開發展開了新的熱潮。二值權重,即僅限於兩個可能值(例如-1或1)的權重,通過用簡單累加代替許多乘法—累加操作,爲專用DL硬件帶來巨大便利。因爲乘法器
>>阅读原文<<
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
CAP理論是什麼?
-
NoSQL教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Scala 中文亂碼解決
相關標籤/搜索
論文筆記
networks
neural
training
weights
binary
deep
論文
論文閱讀筆記
文筆
MyBatis教程
PHP教程
MySQL教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
2.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
3.
論文筆記 - Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
4.
【論文筆記】Training Very Deep Networks - Highway Networks
5.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
6.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
7.
Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations -1,1
8.
Balanced Binary Neural Networks With Gated Residual
9.
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
10.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
>>更多相關文章<<