1. 數據準備:收集數據與讀取算法
2. 數據預處理:處理數據app
3. 訓練集與測試集:將先驗數據按必定比例進行拆分。dom
4. 提取數據特徵,將文本解析爲詞向量 。機器學習
5. 訓練模型:創建模型,用訓練數據訓練模型。即根據訓練樣本集,計算詞項出現的機率P(xi|y),後獲得各種下詞彙出現機率的向量 。學習
6. 測試模型:用測試數據集評估模型預測的正確率。測試
混淆矩陣spa
準確率、精確率、召回率、F值code
7. 預測一封新郵件的類別。orm
8. 考慮如何進行中文的文本分類(期末做業之一)。 blog
要點:
理解樸素貝葉斯算法
理解機器學習算法建模過程
理解文本經常使用處理流程
理解模型評估方法
import csv from sklearn.model_selection import train_test_split import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.naive_bayes import MultinomialNB # 預處理 def preprocessing(text): # text = text.decode("utf-8") tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 進行分詞 stops = stopwords.words('a') # 去掉停用詞 tokens = [token for token in tokens if token not in stops] tokens = [token.lower() for token in tokens if len(token) >= 3] lmtzr = WordNetLemmatizer() # 還原詞性 tokens = [lmtzr.lemmatize(token) for token in tokens] preprocessed_text = ' '.join(tokens) return preprocessed_text def read_data(): '''讀取文件並進行預處理''' sms=open(r'G:\大三\數據挖掘\SMSS\SMSSpamCollectionjs.txt','r',encoding='utf-8') sms_data = [] sms_label = [] csv_reader=csv.reader(sms,delimiter='\t') nltk.download('punkt') nltk.download('wordnet') for line in csv_reader: print(line) sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close() x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label) print(len(sms_data),len(x_train),len(x_test)) print(x_train) return sms_data,sms_label,x_train,x_test,y_train,y_test # 向量化 def xiangliang(x_train, x_test): from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='a', strip_accents='unicode') # ,norm='12' x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) return x_train, x_test, vectorizer # 樸素貝葉斯分類器 def beiNB(x_train, y_train, x_test): clf = MultinomialNB().fit(x_train, y_train) y_nb_pred = clf.predict(x_test) return y_nb_pred, clf def result(vectorizer, clf): # 分類結果 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(y_nb_pred.shape, y_nb_pred) print('nb_confusion_matrix:') cm = confusion_matrix(y_test, y_nb_pred) print(cm) cr = classification_report(y_test, y_nb_pred) print(cr) feature_names = vectorizer.get_feature_names() coefs = clf.coef_ intercept = clf.intercept_ coefs_with_fns = sorted(zip(coefs[0], feature_names)) n = 10 top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1]) for (coef_1, fn_1), (coef_2, fn_2) in top: print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2, fn_2))
if __name__ == '__main__': sms_data, sms_lable, x_train, x_test, y_train, y_test = read_data() X_train, X_test, vectorizer = xiangliang(x_train, x_test) y_nb_pred, clf = beiNB(X_train, y_train, X_test) result(vectorizer, clf)