原理:node
叉排序樹的查找過程和次優二叉樹相似,一般採起二叉鏈表做爲二叉排序樹的存儲結構。中序遍歷二叉排序樹可獲得一個關鍵字的有序序列,一個無序序列能夠經過構造一棵二叉排序樹變成一個有序序列,構造樹的過程即爲對無序序列進行排序的過程。每次插入的新的結點都是二叉排序樹上新的葉子結點,在進行插入操做時,沒必要移動其它結點,只需改動某個結點的指針,由空變爲非空便可。搜索,插入,刪除的複雜度等於樹高,O(log(n)).post
JavaScript實現:this
var BinarySearchTree = function(){ this.root = null; } BinarySearchTree.prototype = { insert: function(key){//插入 var newNode = new this.Node(key); if(this.root === null){ this.root = newNode; }else{ this.insertNode(this.root, newNode) } console.log(this.root) }, inOrderTraverse: function(callback){//中序查找 this.inOrderTraverseNode(this.root, callback); }, preOrderTraverse: function(callback){//先序查找 this.preOrderTraverseNode(this.root, callback); }, postOrderTraverse: function(callback){//後序查找 this.postOrderTraverseNode(this.root, callback); }, min: function(){//最小值 return this.minNode(this.root) }, max: function(){//最大值 return this.maxNode(this.root) }, search: function(key){//查找 this.searchNode(this.root, key) }, remove: function(key){//移除樹節點 this.removeNode(this.root, key) }, Node: function(key){ this.key = key; this.left = null; this.right = null; }, insertNode: function(node, newNode){ if(newNode.key < node.key){ if(node.left === null){ node.left = newNode; }else{ this.insertNode(node.left, newNode) } }else{ if(node.right === null){ node.right = newNode; }else{ this.insertNode(node.right, newNode) } } }, inOrderTraverseNode: function(node, callback){ if(node !== null){ this.inOrderTraverseNode(node.left, callback); callback(node.key); this.inOrderTraverseNode(node.right, callback); } }, preOrderTraverseNode: function(node, callback){ if(node !== null){ callback(node.key); this.preOrderTraverseNode(node.left, callback); this.preOrderTraverseNode(node.right, callback); } }, postOrderTraverseNode: function(node, callback){ if(node !== null){ this.postOrderTraverseNode(node.left, callback); this.postOrderTraverseNode(node.right, callback); callback(node.key); } }, minNode: function(node){ if(node){ while(node && node.left !== null){ node = node.left; } return node.key; } return null; }, maxNode: function(node){ if(node){ while(node && node.right !== null){ node = node.right; } return node.key; } return null; }, searchNode: function(node, key){ if(node === null) return false; if(key < node.key){ return this.searchNode(node.left, key); }else if(key > node.key){ return this.searchNode(node.right, key); }else{ return true; } }, removeNode(node, key){ if(node === null) return null; if(key < node.key){ node.left = this.removeNode(node.left, key); return node; }else if(key > node.key){ node.right = this.removeNode(node.right, key); return node; }else{ if(node.left === null && node.right === null){ node = null; return node; }else if(node.left === null){ node = node.right; return node; }else if(node.right === null){ node = node.left; return node; } var aux = this.findMinNode(node.right); node.key = aux.key; node.right = this.removeNode(node.right, aux.key); return node; } }, findMinNode: function(node){ if(node){ while(node && node.left !== null){ node = node.left; } return node.key; } return null; } }