題目連接:https://leetcode.com/problems/add-two-numbers/description/ide
題目大意:給出兩個單鏈表,表示兩個數字,這兩個數字中的每一位上的數字在單鏈表中都倒序存放,每一個結點中都含有一個非負整數,計算這兩個數字的和,要求倒序插入到單鏈表中並返回。例子以下:spa
法一(WA):利用棧,對於每個鏈表,將數字取出來依次放入棧中,而後再取出存成它原本表示的數,而後將兩個數相加,再將相加的結果存放進單鏈表中返回。這個解法比較好理解,就是轉換成數學數字再計算,可是當數字長度超過int範圍的時候就會發生問題,也就是int會存不下的問題。代碼以下:code
1 public ListNode addTwoNumbers(ListNode l1, ListNode l2) { 2 Stack<Integer> stack1 = new Stack<Integer>(); 3 Stack<Integer> stack2 = new Stack<Integer>(); 4 while(l1 != null) { 5 stack1.push(l1.val); 6 l1 = l1.next; 7 } 8 while(l2 != null) { 9 stack2.push(l2.val); 10 l2 = l2.next; 11 } 12 int num1 = 0, num2 = 0; 13 while(!stack1.isEmpty()) { 14 num1 = num1 * 10 + stack1.pop(); 15 } 16 while(!stack2.isEmpty()) { 17 num2 = num2 * 10 + stack2.pop(); 18 } 19 int num = num1 + num2; 20 ListNode l = new ListNode(num % 10); 21 num = num / 10; 22 ListNode tmp = null, p = l; 23 while(num != 0) { 24 tmp = new ListNode(num % 10); 25 tmp.next = null; 26 p.next = tmp; 27 p = tmp; 28 num = num / 10; 29 } 30 return l; 31 }
法二:在經歷上個方法的失敗後,立馬想到了大數加法,轉而用大數加法順利成章的作,迎刃而解,只是要處理一些細節問題,好比要考慮到最後flag不是0而是1的問題。代碼以下(耗時55ms):blog
1 //相似大數加法 2 public ListNode addTwoNumbers2(ListNode l1, ListNode l2) { 3 ListNode l = null, tmp = null, p = null; 4 int flag = 0, num = 0; 5 while(l1 != null && l2 != null) { 6 if(l == null) { 7 num = l1.val + l2.val; 8 flag = num / 10; 9 l = new ListNode(num % 10); 10 l.next = null; 11 p = l; 12 } 13 else { 14 num = l1.val + l2.val + flag; 15 flag = num / 10; 16 tmp = new ListNode(num % 10); 17 tmp.next = null; 18 p.next = tmp; 19 p = tmp; 20 } 21 l1 = l1.next; 22 l2 = l2.next; 23 } 24 while(l1 != null) { 25 num = flag + l1.val; 26 flag = num / 10; 27 tmp = new ListNode(num % 10); 28 tmp.next = null; 29 p.next = tmp; 30 p = tmp; 31 l1 = l1.next; 32 } 33 while(l2 != null) { 34 num = flag + l2.val; 35 flag = num / 10; 36 tmp = new ListNode(num % 10); 37 tmp.next = null; 38 p.next = tmp; 39 p = tmp; 40 l2 = l2.next; 41 } 42 if(flag != 0) { 43 tmp = new ListNode(flag); 44 tmp.next = null; 45 p.next = tmp; 46 p = tmp; 47 } 48 return l; 49 }