求一個給定的圓$ (x^2+y^2=r^2) $,在圓周上有多少個點的座標是整數。ios
\(r\)git
整點個數spa
4code
4ip
\(n\le 2000 000 000\)get
題目的所求能夠轉化爲
問題的所求能夠轉化爲\(y^{2}=r^2-x^2\)(其中\(x,y,r\)均爲正整數).
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均爲正整數)
不妨設\((r-x)=d\times u------① (r+x)=d\times v------②(\)其中\(gcd(u,v)=1\))
則有\(y^2=d^2\times u \times v\),由於\(u,v\)互質因此\(u,v\)必定是徹底平方數,因此再設\(u=s^2,v=t^2\)
則有\(y^2=d^2 \times s^2 \times v^2\),即\(y=d \times s \times v\)
\(②-①\)得\(x=\dfrac{t^2-s^2}{2}\times d\)
\(②+①\)得\(2\times r=(t^2+s^2)\times d\)
而後枚舉\(2\times r\)的約數\(d\),枚舉算出\(s\),算出對應\(t\),若\(gcd(t,s)=1\)且\(x,t\)爲整數,帶入求出\(x,y\),若符合題意答案就加二(\(x,y\)知足交換律)
最後的答案爲\((ans+1)\times 4\),(\(+1\)是由於座標軸上有一點,\(\times 4\)是由於\(4\)個象限)
注意:當心乘法運算時爆\(long\) \(long\);string
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> #include<cstring> #include<string> #include<iomanip> #include<cstdlib> #include<queue> #include<stack> #include<map> #include<vector> #include<set> #define int long long inline int read() { int s=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();} while(isdigit(ch)) s=s*10+ch-'0',ch=getchar(); return s*w; } inline int gcd(int a,int b) { if(!b) return a; return gcd(b,a%b); } int r,ans; inline void work(int d) { for(int s=1;s*s<=r/d;++s) { int t=sqrt(r/d-s*s); if(gcd(s,t)==1&&s*s+t*t==r/d) { int x=(s*s-t*t)/2*d; int y=d*s*t; if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2; } } } signed main() { r=read()*2; for(int i=1;i*i<=r;++i) { if(r%i==0) { work(i); if(i*i!=r) work(r/i); } } printf("%lld",(1+ans)*4); return 0; }