深刻淺出 Runtime(一):初識
深刻淺出 Runtime(二):數據結構
深刻淺出 Runtime(三):消息機制
深刻淺出 Runtime(四):super 的本質
深刻淺出 Runtime(五):具體應用
深刻淺出 Runtime(六):相關面試題面試
OC
中的方法調用,其實都是轉換爲objc_msgSend()
函數的調用(不包括[super message]
)。void objc_msgSend(id _Nullable self, SEL _Nonnull op, ...)
複製代碼
receiver
(方法調用者/消息接收者)發送一條消息(SEL
方法名)receiver
SEL
SEL
方法的參數objc_msgSend()
的執行流程能夠分爲 3 大階段:
在前面的文章說過,Runtime 是一個用C、彙編
編寫的運行時庫, 在底層彙編裏面若是須要調用 C 函數的話,蘋果會爲其加一個下劃線_, 因此查看objc_msgSend
函數的實現,須要搜索_objc_msgSend
(objc-msg-arm64.s(objc4))。編程
// objc-msg-arm64.s(objc4)
/* _objc_msgSend 函數實現 */
// ⚠️彙編程序入口格式爲:ENTRY + 函數名
ENTRY _objc_msgSend
// ⚠️若是 receiver 爲 nil 或者 tagged pointer,執行 LNilOrTagged,不然繼續往下執行
cmp x0, #0 // nil check and tagged pointer check
b.le LNilOrTagged
// ⚠️經過 isa 找到 class/meta-class
ldr x13, [x0] // x13 = isa
and x16, x13, #ISA_MASK // x16 = class
LGetIsaDone:
// ⚠️進入 cache 緩存查找,傳的參數爲 NORMAL
// CacheLookup 宏,用於在緩存中查找 SEL 對應方法實現
CacheLookup NORMAL // calls imp or objc_msgSend_uncached
LNilOrTagged:
// ⚠️若是 receiver 爲 nil,執行 LReturnZero,結束 objc_msgSend
b.eq LReturnZero // nil check
// ⚠️若是 receiver 爲 tagged pointer,則執行其它
......
b LGetIsaDone
LReturnZero:
ret // 返回
// ⚠️彙編中,函數的結束格式爲:ENTRY + 函數名
END_ENTRY _objc_msgSend
.macro CacheLookup
// ⚠️根據 SEL 去哈希表 buckets 中查找方法
// x1 = SEL, x16 = isa
ldp x10, x11, [x16, #CACHE] // x10 = buckets, x11 = occupied|mask
and w12, w1, w11 // x12 = _cmd & mask
add x12, x10, x12, LSL #4 // x12 = buckets + ((_cmd & mask)<<4) ldp x9, x17, [x12] // {x9, x17} = *bucket // ⚠️緩存命中,進行 CacheHit 操做 1: cmp x9, x1 // if (bucket->sel != _cmd)
b.ne 2f // scan more
CacheHit $0 // call or return imp
// ⚠️緩存中沒有找到,進行 CheckMiss 操做
2: // not hit: x12 = not-hit bucket
CheckMiss $0 // miss if bucket->sel == 0
cmp x12, x10 // wrap if bucket == buckets
b.eq 3f
ldp x9, x17, [x12, #-16]! // {x9, x17} = *--bucket
b 1b // loop
3: // wrap: x12 = first bucket, w11 = mask
add x12, x12, w11, UXTW #4 // x12 = buckets+(mask<<4) // Clone scanning loop to miss instead of hang when cache is corrupt. // The slow path may detect any corruption and halt later. ldp x9, x17, [x12] // {x9, x17} = *bucket 1: cmp x9, x1 // if (bucket->sel != _cmd)
b.ne 2f // scan more
CacheHit $0 // call or return imp
2: // not hit: x12 = not-hit bucket
CheckMiss $0 // miss if bucket->sel == 0
cmp x12, x10 // wrap if bucket == buckets
b.eq 3f
ldp x9, x17, [x12, #-16]! // {x9, x17} = *--bucket
b 1b // loop
3: // double wrap
JumpMiss $0
.endmacro
// CacheLookup NORMAL|GETIMP|LOOKUP
#define NORMAL 0
#define GETIMP 1
#define LOOKUP 2
.macro CacheHit
.if $0 == NORMAL // ⚠️CacheLookup 傳的參數是 NORMAL
MESSENGER_END_FAST
br x17 // call imp // ⚠️執行函數
.elseif $0 == GETIMP
mov x0, x17 // return imp
ret
.elseif $0 == LOOKUP
ret // return imp via x17
.else
.abort oops
.endif
.endmacro
.macro CheckMiss
// miss if bucket->sel == 0
.if $0 == GETIMP
cbz x9, LGetImpMiss
.elseif $0 == NORMAL // ⚠️CacheLookup 傳的參數是 NORMAL
cbz x9, __objc_msgSend_uncached // ⚠️執行 __objc_msgSend_uncached
.elseif $0 == LOOKUP
cbz x9, __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro
.macro JumpMiss
.if $0 == GETIMP
b LGetImpMiss
.elseif $0 == NORMAL
b __objc_msgSend_uncached
.elseif $0 == LOOKUP
b __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro
// ⚠️__objc_msgSend_uncached
// ⚠️緩存中沒有找到方法的實現,接下來去 MethodTableLookup 類的方法列表中查找
STATIC_ENTRY __objc_msgSend_uncached
MethodTableLookup NORMAL
END_ENTRY __objc_msgSend_uncached
.macro MethodTableLookup
blx __class_lookupMethodAndLoadCache3 // ⚠️執行C函數 _class_lookupMethodAndLoadCache3
.endmacro
複製代碼
相反,經過彙編中函數名找對應 C 函數實現時,須要去掉一個下劃線_。數組
// objc-runtime-new.mm(objc4)
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
// ⚠️注意傳參,因爲以前已經經過彙編去緩存中查找方法,因此這裏不會再次到緩存中查找
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO; // triedResolver 標記用於 動態方法解析
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) { // cache = NO,跳過
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.read();
if (!cls->isRealized()) { // ⚠️若是 receiverClass(消息接受者類) 還未實現,就進行 realize 操做
// Drop the read-lock and acquire the write-lock.
// realizeClass() checks isRealized() again to prevent
// a race while the lock is down.
runtimeLock.unlockRead();
runtimeLock.write();
realizeClass(cls);
runtimeLock.unlockWrite();
runtimeLock.read();
}
// ⚠️若是 receiverClass 須要初始化且還未初始化,就進行初始化操做
// 這裏插入一個 +initialize 方法的知識點
// 調用 _class_initialize(cls),該函數中會遞歸遍歷父類,判斷父類是否存在且還未初始化 _class_initialize(cls->superclass)
// 調用 callInitialize(cls) ,給 cls 發送一條 initialize 消息((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize)
// 因此 +initialize 方法會在類第一次接收到消息時調用
// 調用方式:objc_msgSend()
// 調用順序:先調用父類的 +initialize,再調用子類的 +initialize (先初始化父類,再初始化子類,每一個類只會初始化1次)
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
// ⚠️⚠️⚠️核心
retry:
runtimeLock.assertReading();
// ⚠️去 receiverClass 的 cache 中查找方法,若是找到 imp 就直接調用
imp = cache_getImp(cls, sel);
if (imp) goto done;
// ⚠️去 receiverClass 的 class_rw_t 中的方法列表查找方法,若是找到 imp 就調用並將該方法緩存到 receiverClass 的 cache 中
{
Method meth = getMethodNoSuper_nolock(cls, sel); // ⚠️去目標類的方法列表中查找方法實現
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls); // ⚠️緩存方法
imp = meth->imp;
goto done;
}
}
// ⚠️逐級查找父類的緩存和方法列表,若是找到 imp 就調用並將該方法緩存到 receiverClass 的 cache 中
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
}
// ⚠️進入「動態方法解析」階段
// No implementation found. Try method resolver once.
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
// ⚠️進入「消息轉發」階段
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
return imp;
}
複製代碼
咱們來看一下getMethodNoSuper_nolock(cls, sel)
是怎麼從類中查找方法實現的緩存
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
assert(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
for (auto mlists = cls->data()->methods.beginLists(),
end = cls->data()->methods.endLists();
mlists != end;
++mlists)
{
// ⚠️核心函數 search_method_list()
method_t *m = search_method_list(*mlists, sel);
if (m) return m;
}
return nil;
}
static method_t *search_method_list(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
if (__builtin_expect(methodListIsFixedUp && methodListHasExpectedSize, 1)) {
// ⚠️若是方法列表是通過排序的,則進行二分查找
return findMethodInSortedMethodList(sel, mlist);
} else {
// ⚠️若是方法列表沒有進行排序,則進行線性遍歷查找
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
......
return nil;
}
static method_t *findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
assert(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
// ⚠️count >>= 1 二分查找
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name;
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
複製代碼
咱們來看一下log_and_fill_cache(cls, meth->imp, sel, inst, cls)
是怎麼緩存方法的bash
/*********************************************************************** * log_and_fill_cache * Log this method call. If the logger permits it, fill the method cache. * cls is the method whose cache should be filled. * implementer is the class that owns the implementation in question. **********************************************************************/
static void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
if (objcMsgLogEnabled) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
cache_fill (cls, sel, imp, receiver);
}
#if TARGET_OS_WIN32 || TARGET_OS_EMBEDDED
# define SUPPORT_MESSAGE_LOGGING 0
#else
# define SUPPORT_MESSAGE_LOGGING 1
#endif
複製代碼
cache_fill()
函數實現已經在上一篇文章中寫到。
關於緩存查找流程和更多cache_t
的知識,能夠查看:
深刻淺出 Runtime(二):數據結構數據結構
+(BOOL)resolveInstanceMethod:(SEL)sel
+(BOOL)resolveClassMethod:(SEL)sel
BOOL class_addMethod(Class cls, SEL name, IMP imp, const char *types)
eat
實例方法和類方法,而 HTPerson.m 文件中並無這兩個方法的對應實現,咱們爲這兩個方法動態添加了實現,輸出結果以下。// main.m
#import <Foundation/Foundation.h>
#import "HTPerson.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
[[HTPerson new] eat];
[HTPerson eat];
}
return 0;
}
@end
// HTPerson.h
#import <Foundation/Foundation.h>
@interface HTPerson : NSObject
- (void)eat; // 沒有對應實現
- (void)sleep;
+ (void)eat; // 沒有對應實現
+ (void)sleep;
@end
// HTPerson.m
#import "HTPerson.h"
#import <objc/runtime.h>
@implementation HTPerson
- (void)sleep
{
NSLog(@"%s",__func__);
}
+ (void)sleep
{
NSLog(@"%s",__func__);
}
+ (BOOL)resolveInstanceMethod:(SEL)sel
{
if (sel == @selector(eat)) {
// 獲取其它方法, Method 就是指向 method_t 結構體的指針
Method method = class_getInstanceMethod(self, @selector(sleep));
/* 參數1:給哪一個類添加 參數2:給哪一個方法添加 參數3:方法的實現地址 參數4:方法的編碼類型 */
class_addMethod(self, // 實例方法存放在類對象中,因此這裏要傳入類對象
sel,
method_getImplementation(method),
method_getTypeEncoding(method)
);
// 返回 YES 表明有動態添加方法實現
// 從源碼來看,該返回值只是用來打印解析結果相關信息,並不影響動態方法解析的結果
return YES;
}
return [super resolveInstanceMethod:sel];
}
+ (BOOL)resolveClassMethod:(SEL)sel
{
if (sel == @selector(eat)) {
Method method = class_getClassMethod(object_getClass(self), @selector(sleep));
class_addMethod(object_getClass(self), // 類方法存放在元類對象中,因此這裏要傳入元類對象
sel,
method_getImplementation(method),
method_getTypeEncoding(method)
);
return YES;
}
return [super resolveClassMethod:sel];
}
@end
複製代碼
-[HTPerson sleep]
+[HTPerson sleep]app
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
......
retry:
......
// ⚠️若是「消息發送」階段未找到方法的實現,進行一次「動態方法解析」
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst); // ⚠️核心函數
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES; // ⚠️標記triedResolver爲YES
goto retry; // ⚠️再次進入消息發送,從「去 receiverClass 的 cache 中查找方法」這一步開始
}
// ⚠️進入「消息轉發」階段
......
}
// objc-class.mm(objc4)
void _class_resolveMethod(Class cls, SEL sel, id inst)
{
// ⚠️判斷是 class 對象仍是 meta-class 對象
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
// ⚠️核心函數
_class_resolveInstanceMethod(cls, sel, inst);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
// ⚠️核心函數
_class_resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
_class_resolveInstanceMethod(cls, sel, inst);
}
}
}
/*********************************************************************** * _class_resolveInstanceMethod * Call +resolveInstanceMethod, looking for a method to be added to class cls. * cls may be a metaclass or a non-meta class. * Does not check if the method already exists. **********************************************************************/
static void _class_resolveInstanceMethod(Class cls, SEL sel, id inst)
{
// ⚠️查看 receiverClass 的 meta-class 對象的方法列表裏面是否有 SEL_resolveInstanceMethod 函數 imp
// ⚠️也就是看咱們是否實現了 +(BOOL)resolveInstanceMethod:(SEL)sel 方法
// ⚠️這裏必定會找到該方法實現,由於 NSObject 中有實現
if (! lookUpImpOrNil(cls->ISA(), SEL_resolveInstanceMethod, cls,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
// ⚠️若是沒找到,說明程序異常,直接返回
// Resolver not implemented.
return;
}
// ⚠️若是找到了,經過 objc_msgSend 給對象發送一條 SEL_resolveInstanceMethod 消息
// ⚠️即調用一下 +(BOOL)resolveInstanceMethod:(SEL)sel 方法
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(cls, SEL_resolveInstanceMethod, sel);
// ⚠️下面是解析結果的一些打印信息
......
}
/*********************************************************************** * _class_resolveClassMethod * Call +resolveClassMethod, looking for a method to be added to class cls. * cls should be a metaclass. * Does not check if the method already exists. **********************************************************************/
static void _class_resolveClassMethod(Class cls, SEL sel, id inst)
{
assert(cls->isMetaClass());
// ⚠️查看 receiverClass 的 meta-class 對象的方法列表裏面是否有 SEL_resolveClassMethod 函數 imp
// ⚠️也就是看咱們是否實現了 +(BOOL)resolveClassMethod:(SEL)sel 方法
// ⚠️這裏必定會找到該方法實現,由於 NSObject 中有實現
if (! lookUpImpOrNil(cls, SEL_resolveClassMethod, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
// ⚠️若是沒找到,說明程序異常,直接返回
// Resolver not implemented.
return;
}
// ⚠️若是找到了,經過 objc_msgSend 給對象發送一條 SEL_resolveClassMethod 消息
// ⚠️即調用一下 +(BOOL)resolveClassMethod:(SEL)sel 方法
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(_class_getNonMetaClass(cls, inst), // 該函數返回值是類對象,而非元類對象
SEL_resolveClassMethod, sel);
// ⚠️下面是解析結果的一些打印信息
......
}
複製代碼
!= receiver
的對象,來完成這一步驟; +/- (id)forwardingTargetForSelector:(SEL)sel
+/- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
NSInvocation
對象(NSInvocation
封裝了未知消息的所有內容,包括:方法調用者 target、方法名 selector、方法參數 argument 等),而後調用第二個方法並將該NSInvocation
對象做爲參數傳入。+/- (void)forwardInvocation:(NSInvocation *)invocation
+/- (void)doesNotRecognizeSelector:(SEL)sel
方法並拋出經典的 crash:unrecognized selector sent to instance/class
,結束 objc_msgSend 的所有流程。+ (id)forwardingTargetForSelector:(SEL)sel {
return nil;
}
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)sel {
_objc_fatal("+[NSObject methodSignatureForSelector:] "
"not available without CoreFoundation");
}
+ (void)forwardInvocation:(NSInvocation *)invocation {
[self doesNotRecognizeSelector:(invocation ? [invocation selector] : 0)];
}
+ (void)doesNotRecognizeSelector:(SEL)sel {
_objc_fatal("+[%s %s]: unrecognized selector sent to instance %p",
class_getName(self), sel_getName(sel), self);
}
複製代碼
eat
實例方法,而 HTPerson.m 文件中並無該方法的對應實現,HTDog.m 中有同名方法的實現,咱們將消息轉發給 HTDog 的實例對象,輸出結果以下。// main.m
#import <Foundation/Foundation.h>
#import "HTPerson.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
[[HTPerson new] eat];
}
return 0;
}
@end
// HTPerson.h
#import <Foundation/Foundation.h>
@interface HTPerson : NSObject
- (void)eat; // 沒有對應實現
@end
// HTPerson.m
#import "HTPerson.h"
#import "HTDog.h"
@implementation HTPerson
- (id)forwardingTargetForSelector:(SEL)aSelector
{
if (aSelector == @selector(eat)) {
return [HTDog new]; // 將 eat 消息轉發給 HTDog 的實例對象
// return [HTDog class]; // 還能夠將 eat 消息轉發給 HTDog 的類對象
}
return [super forwardingTargetForSelector:aSelector];
}
@end
// HTDog.m
#import "HTDog.h"
@implementation HTDog
- (void)eat
{
NSLog(@"%s",__func__);
}
+ (void)eat
{
NSLog(@"%s",__func__);
}
@end
複製代碼
-[HTDog eat]框架
// HTPerson.m
#import "HTPerson.h"
#import "HTDog.h"
@implementation HTPerson
- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(eat)) {
return [[HTDog new] methodSignatureForSelector:aSelector];
//return [NSMethodSignature signatureWithObjCTypes:"v@i"];
}
return [super methodSignatureForSelector:aSelector];
}
- (void)forwardInvocation:(NSInvocation *)anInvocation
{
// 將未知消息轉發給其它對象
[anInvocation invokeWithTarget:[HTDog new]];
// 改變未知消息的內容(如方法名、方法參數)再轉發給其它對象
/* anInvocation.selector = @selector(sleep); anInvocation.target = [HTDog new]; int age; [anInvocation getArgument:&age atIndex:2]; // 參數順序:target、selector、other arguments [anInvocation setArgument:&age atIndex:2]; // 參數的個數由上個方法返回的方法簽名決定,要注意數組越界問題 [anInvocation invoke]; int ret; [anInvocation getReturnValue:&age]; // 獲取返回值 */
// 定義任何邏輯,如:只打印一句話
/* NSLog(@"好好學習"); */
}
@end
複製代碼
-[HTDog eat]ide
// objc-runtime-new.mm(objc4)
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
......
// ⚠️若是「消息發送」階段未找到方法的實現,且經過「動態方法解析」沒有解決
// ⚠️進入「消息轉發」階段
imp = (IMP)_objc_msgForward_impcache; // 進入彙編
cache_fill(cls, sel, imp, inst); // 緩存方法
......
}
複製代碼
// objc-msg-arm64.s(objc4)
STATIC_ENTRY __objc_msgForward_impcache
b __objc_msgForward
END_ENTRY __objc_msgForward_impcache
ENTRY __objc_msgForward
adrp x17, __objc_forward_handler@PAGE // ⚠️執行C函數 _objc_forward_handler
ldr x17, [x17, __objc_forward_handler@PAGEOFF]
br x17
END_ENTRY __objc_msgForward
複製代碼
// objc-runtime.mm(objc4)
// Default forward handler halts the process.
__attribute__((noreturn)) void
objc_defaultForwardHandler(id self, SEL sel)
{
_objc_fatal("%c[%s %s]: unrecognized selector sent to instance %p "
"(no message forward handler is installed)",
class_isMetaClass(object_getClass(self)) ? '+' : '-',
object_getClassName(self), sel_getName(sel), self);
}
void *_objc_forward_handler = (void*)objc_defaultForwardHandler;
複製代碼
能夠看到_objc_forward_handler
是一個函數指針,指向objc_defaultForwardHandler()
,該函數只是打印信息。因爲蘋果沒有對此開源,咱們沒法再深刻探索關於「消息轉發」的詳細執行邏輯。函數
咱們知道,若是調用一個沒有實現的方法,而且沒有進行「動態方法解析」和「消息轉發」處理,會報經典的 crash:unrecognized selector sent to instance/class
。咱們查看 crash 打印信息的函數調用棧,以下,能夠看的系統調用了一個叫___forwarding___
的函數。
該函數是 CoreFoundation 框架中的,蘋果對此函數還沒有開源,咱們能夠打斷點進入該函數的彙編實現。
如下是從網上找到的___forewarding___
的 C 語言僞代碼實現。
// 僞代碼
int __forwarding__(void *frameStackPointer, int isStret) {
id receiver = *(id *)frameStackPointer;
SEL sel = *(SEL *)(frameStackPointer + 8);
const char *selName = sel_getName(sel);
Class receiverClass = object_getClass(receiver);
// ⚠️⚠️⚠️調用 forwardingTargetForSelector:
if (class_respondsToSelector(receiverClass, @selector(forwardingTargetForSelector:))) {
id forwardingTarget = [receiver forwardingTargetForSelector:sel];
// ⚠️判斷該方法是否返回了一個對象且該對象 != receiver
if (forwardingTarget && forwardingTarget != receiver) {
if (isStret == 1) {
int ret;
objc_msgSend_stret(&ret,forwardingTarget, sel, ...);
return ret;
}
//⚠️objc_msgSend(返回值, sel, ...);
return objc_msgSend(forwardingTarget, sel, ...);
}
}
// 殭屍對象
const char *className = class_getName(receiverClass);
const char *zombiePrefix = "_NSZombie_";
size_t prefixLen = strlen(zombiePrefix); // 0xa
if (strncmp(className, zombiePrefix, prefixLen) == 0) {
CFLog(kCFLogLevelError,
@"*** -[%s %s]: message sent to deallocated instance %p",
className + prefixLen,
selName,
receiver);
<breakpoint-interrupt>
}
// ⚠️⚠️⚠️調用 methodSignatureForSelector 獲取方法簽名後再調用 forwardInvocation
if (class_respondsToSelector(receiverClass, @selector(methodSignatureForSelector:))) {
// ⚠️調用 methodSignatureForSelector 獲取方法簽名
NSMethodSignature *methodSignature = [receiver methodSignatureForSelector:sel];
// ⚠️判斷返回值是否爲 nil
if (methodSignature) {
BOOL signatureIsStret = [methodSignature _frameDescriptor]->returnArgInfo.flags.isStruct;
if (signatureIsStret != isStret) {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: method signature and compiler disagree on struct-return-edness of '%s'. Signature thinks it does%s return a struct, and compiler thinks it does%s.",
selName,
signatureIsStret ? "" : not,
isStret ? "" : not);
}
if (class_respondsToSelector(receiverClass, @selector(forwardInvocation:))) {
// ⚠️根據方法簽名建立一個 NSInvocation 對象
NSInvocation *invocation = [NSInvocation _invocationWithMethodSignature:methodSignature frame:frameStackPointer];
// ⚠️調用 forwardInvocation
[receiver forwardInvocation:invocation];
void *returnValue = NULL;
[invocation getReturnValue:&value];
return returnValue;
} else {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: object %p of class '%s' does not implement forwardInvocation: -- dropping message",
receiver,
className);
return 0;
}
}
}
SEL *registeredSel = sel_getUid(selName);
// selector 是否已經在 Runtime 註冊過
if (sel != registeredSel) {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: selector (%p) for message '%s' does not match selector known to Objective C runtime (%p)-- abort",
sel,
selName,
registeredSel);
} // ⚠️⚠️⚠️調用 doesNotRecognizeSelector
else if (class_respondsToSelector(receiverClass,@selector(doesNotRecognizeSelector:))) {
[receiver doesNotRecognizeSelector:sel];
}
else {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: object %p of class '%s' does not implement doesNotRecognizeSelector: -- abort",
receiver,
className);
}
// The point of no return.
kill(getpid(), 9);
}
複製代碼
至此,objc_msgSend
方法調用流程就已經講解結束了。 下面來作一個小總結。