參考reference 詳解java
java中使用Reference對象來描述全部的引用對象算法
ReferenceQueue
,會有不一樣的狀態變動,另一旦狀態變成Inactive,狀態就不會再作任何變動
當GC發生時,被回收的對象會添加到Pending列表中,經過Reference的next字段來構建Pending鏈表。在Reference的靜態代碼塊,則會啓動RefenrenceHandler數組
static {
...
Thread handler = new ReferenceHandler(tg, "Reference Handler");
/* If there were a special system-only priority greater than
* MAX_PRIORITY, it would be used here
*/
handler.setPriority(Thread.MAX_PRIORITY);
handler.setDaemon(true);
handler.start();
...
}
複製代碼
並設置爲最大的優先級,它負責將pending中的元素添加到ReferenceQueue,緩存
private static class ReferenceHandler extends Thread {
public void run() {
for (;;) {
Reference r;
synchronized (lock) {
if (pending != null) {
r = pending;
Reference rn = r.next;
pending = (rn == r) ? null : rn;
r.next = r;
} else {
try {
lock.wait();
} catch (InterruptedException x) { }
continue;
}
}
// Fast path for cleaners
if (r instanceof Cleaner) {
((Cleaner)r).clean();
continue;
}
//存在ReferenceQueue時,將pending中的元素入隊列
ReferenceQueue q = r.queue;
if (q != ReferenceQueue.NULL) q.enqueue(r);
}
}
}
複製代碼
ReferenceQueue提供對列的功能,出隊和入隊,當ReferenceQueue做爲參數被提供時,這意味着用戶一旦從ReferenceQueue中獲取到元素,也就能夠知道,這個對象要被回收了
,以此達到一種通知的效果bash
new
生成的對象,這類可確保不會被GC回收掉虛引用必定要提供ReferenceQueue,由於它沒法返回引用爲null,若是不提供,那麼連通知的機制都沒法實現了網絡
軟引用不只考慮內存,還會考慮referent的使用狀況和建立時間來決定是否該回收。Hotspot會讀取當前堆剩餘的內存,以及配置參數XX:SoftRefLRUPolicyMSPerMB
(每M數據應該存活的毫秒數)函數
void LRUMaxHeapPolicy::setup() {
size_t max_heap = MaxHeapSize;
max_heap -= Universe::get_heap_used_at_last_gc();
max_heap /= M;
//剩餘空間可以存的以M爲單位的數據應該存活的時間
_max_interval = max_heap * SoftRefLRUPolicyMSPerMB;
assert(_max_interval >= 0,"Sanity check");
}
// The oop passed in is the SoftReference object, and not
// the object the SoftReference points to.
bool LRUCurrentHeapPolicy::should_clear_reference(oop p,
jlong timestamp_clock) {
jlong interval = timestamp_clock - java_lang_ref_SoftReference::timestamp(p);
assert(interval >= 0, "Sanity check");
// The interval will be zero if the ref was accessed since the last scavenge/gc.
if(interval <= _max_interval) {
return false;
}
return true;
}
複製代碼
軟引用自身攜帶timestamp和clock,其中clock由GC更新,timestamp每次get的時候,若是和clock不一致則更新oop
public T get() {
T o = super.get();
if (o != null && this.timestamp != clock)
this.timestamp = clock;
return o;
}
複製代碼
若是再上一次GC以後,有過訪問記錄,那麼當前的GC確定不會回收軟引用,這也就意味着,軟引用若是一直沒有回收,升級到老年代,在OOM以前,有可能出現頻繁的Full GCui
weakHashMap在 get/put/remove/resize等方法中均使用了expungeStaleEntries
,去掉多餘的信息this
private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
...
private void expungeStaleEntries() {
//從註冊的隊列中拿到了值
for (Object x; (x = queue.poll()) != null; ) {
synchronized (queue) {
Entry<K,V> e = (Entry<K,V>) x;
...
if (p == e) {
e.value = null; // Help GC
size--;
...
}
}
}
}
複製代碼
若是從註冊的隊列中拿到了對應的元素,那麼就自動刪掉,這裏就是利用了ReferenceQueue承擔通知的角色,以及弱引用的GC就回收性質
在ReferenceHandler中注意到,若是pending中的Reference是一個Cleaner,則直接執行clean
public void clean() {
if (!remove(this))
return;
...
//以前沒有執行過要clean的,如今執行
thunk.run();
...
}
}
複製代碼
以DirectByteBuffer爲例,在使用時,就會建立一個Cleaner
DirectByteBuffer(int cap) {
...
cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
att = null;
}
private static class Deallocator
implements Runnable
{
public void run() {
if (address == 0) {
// Paranoia
return;
}
unsafe.freeMemory(address);
address = 0;
Bits.unreserveMemory(size, capacity);
}
}
複製代碼
java中經過ByteBuffer.allocateDirect
就能夠建立,若是DirectByteBuffer被回收,此時惟一引用DirectByteBuffer的是一個虛引用,因爲垃圾回收的做用,DirectByteBuffer會處於pending狀態,觸發Native內存的回收釋放
參考直接內存
延伸一點網絡讀寫過程非直接內存轉換成直接內存的行爲,javaNio中寫數據IOUtil.write
實現中能夠看到
static long write(FileDescriptor fd, ByteBuffer[] bufs, int offset, int length,
NativeDispatcher nd){
...
if (!(buf instanceof DirectBuffer)) {
//分配直接內存
ByteBuffer shadow = Util.getTemporaryDirectBuffer(rem);
shadow.put(buf);
shadow.flip();
vec.setShadow(iov_len, shadow);
buf.position(pos); // temporarily restore position in user buffer
buf = shadow;
pos = shadow.position();
}
...
}
複製代碼
會發現若是要將一個byte數組對象傳給native,會先轉換成直接內存再操做,這是由於native代碼訪問數組必須保證訪問的時候,byte[]對象不能移動,也就是被"pin"釘住,此時要麼是暫停GC(GC算法有可能要移動對象),要麼是假設換成native的消耗是可接受的,並且I/O操做都很慢,這裏就選擇了後者
Finalizer自身會啓動一個線程,它本身的工做就是一直從ReferenceQueue中拉取對應的元素並執行它的runFinalizer方法
private static class FinalizerThread extends Thread {
FinalizerThread(ThreadGroup g) {
super(g, "Finalizer");
}
public void run() {
for (;;) {
try {
Finalizer f = (Finalizer)queue.remove();
f.runFinalizer();
} catch (InterruptedException x) {
continue;
}
}
}
}
static {
ThreadGroup tg = Thread.currentThread().getThreadGroup();
for (ThreadGroup tgn = tg;
tgn != null;
tg = tgn, tgn = tg.getParent());
Thread finalizer = new FinalizerThread(tg);
finalizer.setPriority(Thread.MAX_PRIORITY - 2);
finalizer.setDaemon(true);
finalizer.start();
}
複製代碼
值得注意的是,Finalizer它自己的構造函數是private,只能經過虛擬機自身來執行register操做,具體的時機根據RegisterFinalizersAtInit
參數來決定,若是值爲true,那麼在構造函數返回以前調用註冊
//vmSymbols.hpp
...
template(object_initializer_name, "<init>")
...
do_intrinsic(_Object_init, java_lang_Object, object_initializer_name, void_method_signature, F_R) \
//c1_GraphBuilder.cpp
void GraphBuilder::method_return(Value x) {
//RegisterFinalizersAtInit爲true
if (RegisterFinalizersAtInit &&
method()->intrinsic_id() == vmIntrinsics::_Object_init) {
call_register_finalizer();
}
複製代碼
不然在分配好空間對象以後,再註冊
instanceOop instanceKlass::allocate_instance(TRAPS) {
assert(!oop_is_instanceMirror(), "wrong allocation path");
bool has_finalizer_flag = has_finalizer(); // Query before possible GC
int size = size_helper(); // Query before forming handle.
KlassHandle h_k(THREAD, as_klassOop());
instanceOop i;
i = (instanceOop)CollectedHeap::obj_allocate(h_k, size, CHECK_NULL);
if (has_finalizer_flag && !RegisterFinalizersAtInit) {
//RegisterFinalizersAtInit爲false
i = register_finalizer(i, CHECK_NULL);
}
return i;
}
複製代碼
註冊執行以下
instanceOop instanceKlass::register_finalizer(instanceOop i, TRAPS) {
if (TraceFinalizerRegistration) {
tty->print("Registered ");
i->print_value_on(tty);
tty->print_cr(" (" INTPTR_FORMAT ") as finalizable", (address)i);
}
instanceHandle h_i(THREAD, i);
// Pass the handle as argument, JavaCalls::call expects oop as jobjects
JavaValue result(T_VOID);
JavaCallArguments args(h_i);
//finalizer_register_method即經過Finalizer找到的register
methodHandle mh (THREAD, Universe::finalizer_register_method());
JavaCalls::call(&result, mh, &args, CHECK_NULL);
return h_i();
}
複製代碼
runFinalizer執行以下
private void runFinalizer() {
synchronized (this) {
if (hasBeenFinalized()) return;
remove();
}
try {
Object finalizee = this.get();
if (finalizee != null && !(finalizee instanceof java.lang.Enum)) {
invokeFinalizeMethod(finalizee);
/* Clear stack slot containing this variable, to decrease
the chances of false retention with a conservative GC */
finalizee = null;
}
} catch (Throwable x) { }
super.clear();
}
複製代碼
則是先看是否是已經執行過,執行過就返回,這裏能夠獲得以下三點信息
finalize()方法只會執行一次
。unfinalized
對象構建的強引用,第一次GC執行,只是在等待runFinalizer的執行,若是執行了,而且以前沒有執行過纔會從 unfinalized
列表中進行刪掉,從而不可達,再第二次GC的時候回收了Finalizer自己執行finalize()方法具體細節以下
JNIEXPORT void JNICALL
Java_java_lang_ref_Finalizer_invokeFinalizeMethod(JNIEnv *env, jclass clazz,
jobject ob)
{
jclass cls;
jmethodID mid;
cls = (*env)->GetObjectClass(env, ob);
if (cls == NULL) return;
mid = (*env)->GetMethodID(env, cls, "finalize", "()V");
//沒有finalize什麼都不作
if (mid == NULL) return;
//執行
(*env)->CallVoidMethod(env, ob, mid);
}
複製代碼