TF2.0默認爲動態圖,即eager模式。意味着TF能像Pytorch同樣不用在session中才能輸出中間參數值了,那麼動態圖和靜態圖畢竟是有區別的,tf2.0也會有寫法上的變化。不過值得吐槽的是,tf2.0啓動速度仍然比Pytorch慢的多。git
操做被記錄在磁帶中(tape)
這是一個關鍵的變化。在TF0.x到TF1.X時代,操做(operation)被加入到Graph中。但如今,操做會被梯度帶記錄,咱們要作的僅僅是讓前向傳播和計算損失的過程發生在梯度帶的上下文管理器中。github
with tf.GradientTape() as tape: logits = mnist_model(images, training=True) loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits) # loss_value 必須在tape內部 grads = tape.gradient(loss_value, mnist_model.variables) optimizer.apply_gradients(zip(grads, mnist_model.variables), global_step=tf.train.get_or_create_global_step())
注意到這裏的tape.gradient用來計算損失函數和model參數的導數。咱們在以前的版本要麼使用優化器的minimize功能,要麼使用tf.gradients來計算導數。在eager模式,tf.gradients不能使用。網絡
# coding: utf-8 # pytorch: loss.backward(), optimizer.step()完成梯度計算和參數更新; # tf2.0經過: grads = tape.gradient(), optimizer.apply_gradients()來實現! # reference: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/convolutional_network.ipynb from __future__ import absolute_import,division,print_function import tensorflow as tf from tensorflow.keras import Model, layers import numpy as np # MNIST dataset parameters. num_classes = 10 # total classes (0-9 digits). # Training parameters. learning_rate = 0.001 training_steps = 200 batch_size = 128 display_step = 10 # Network parameters. conv1_filters = 32 # number of filters for 1st conv layer. conv2_filters = 64 # number of filters for 2nd conv layer. fc1_units = 1024 # number of neurons for 1st fully-connected layer. # Prepare MNIST data. from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # Convert to float32. x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32) # Normalize images value from [0, 255] to [0, 1]. x_train, x_test = x_train / 255., x_test / 255. # Use tf.data API to shuffle and batch data. train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) # Create TF Model. class ConvNet(Model): # Set layers. def __init__(self): super(ConvNet, self).__init__() # Convolution Layer with 32 filters and a kernel size of 5. self.conv1 = layers.Conv2D(32, kernel_size=5, activation=tf.nn.relu) # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. self.maxpool1 = layers.MaxPool2D(2, strides=2) # Convolution Layer with 64 filters and a kernel size of 3. self.conv2 = layers.Conv2D(64, kernel_size=3, activation=tf.nn.relu) # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. self.maxpool2 = layers.MaxPool2D(2, strides=2) # Flatten the data to a 1-D vector for the fully connected layer. self.flatten = layers.Flatten() # Fully connected layer. self.fc1 = layers.Dense(1024) # Apply Dropout (if is_training is False, dropout is not applied). self.dropout = layers.Dropout(rate=0.5) # Output layer, class prediction. self.out = layers.Dense(num_classes) # Set forward pass. def call(self, x, is_training=False): x = tf.reshape(x, [-1, 28, 28, 1]) x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.flatten(x) x = self.fc1(x) x = self.dropout(x, training=is_training) x = self.out(x) if not is_training: # tf cross entropy expect logits without softmax, so only # apply softmax when not training. x = tf.nn.softmax(x) return x # Build neural network model. conv_net = ConvNet() # Cross-Entropy Loss. # Note that this will apply 'softmax' to the logits. def cross_entropy_loss(x, y): # Convert labels to int 64 for tf cross-entropy function. y = tf.cast(y, tf.int64) # Apply softmax to logits and compute cross-entropy. loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x) # Average loss across the batch. return tf.reduce_mean(loss) # Accuracy metric. def accuracy(y_pred, y_true): # Predicted class is the index of highest score in prediction vector (i.e. argmax). correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) # Stochastic gradient descent optimizer. optimizer = tf.optimizers.Adam(learning_rate) # Optimization process. def run_optimization(x, y): # Wrap computation inside a GradientTape for automatic differentiation. with tf.GradientTape() as g: # Forward pass. pred = conv_net(x, is_training=True) # Compute loss. loss = cross_entropy_loss(pred, y) # Variables to update, i.e. trainable variables. trainable_variables = conv_net.trainable_variables # Compute gradients. gradients = g.gradient(loss, trainable_variables) # Update W and b following gradients. optimizer.apply_gradients(zip(gradients, trainable_variables)) # Run training for the given number of steps. for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): # Run the optimization to update W and b values. run_optimization(batch_x, batch_y) if step % display_step == 0: pred = conv_net(batch_x) loss = cross_entropy_loss(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) # Test model on validation set. pred = conv_net(x_test) print("Test Accuracy: %f" % accuracy(pred, y_test))
注意:session
- TF2.0默認爲動態圖,沒有回話Session了;app
- 代碼中注意 `for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1):` 的使用;ide
- Pycharm中注意:from tensorflow.keras import Model, layers ;跳不進去查看內部實現;用面向對象的思想寫網絡結構;init,build,call等函數實現;函數