邏輯迴歸-3.決策邊界

決策邊界


咱們能夠看出 決定y取不一樣值的邊界爲:\[ \theta^T \cdot x_b = 0 \]
上式表達式是一條直線,爲決策邊界,若是新來一個樣本,和訓練後獲得的$ \theta $相乘,根據是否大於0,決定到底屬於哪一類算法

畫出決策邊界

若是樣本有兩個特徵\(x1,x2\),則決策邊界有:\(\theta_0 + \theta_1 \cdot x1 +\theta_2 \cdot x2 = 0\) ,求得\(x2 = \frac{-\theta_0 - \theta_1 \cdot x1}{\theta_2}\)函數

# 定義x2和x1的關係表達式
def x2(x1):
    return (-logic_reg.interception_ - logic_reg.coef_[0] * x1)/logic_reg.coef_[1]
    
x1_plot = numpy.linspace(4,8,1000)
x2_plot = x2(x1_plot)

pyplot.scatter(X[y==0,0],X[y==0,1],color='red')
pyplot.scatter(X[y==1,0],X[y==1,1],color='blue')
pyplot.plot(x1_plot,x2_plot)
pyplot.show()

不規則決策邊界的繪製

特徵域(爲了可視化,特徵值取2,即矩形區域)中可視化區域中全部的點,查看不規則決策邊界
定義繪製特徵域中全部點的函數:spa

def plot_decision_boundary(model,axis):
    x0,x1 = numpy.meshgrid(
        numpy.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        numpy.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    x_new = numpy.c_[x0.ravel(),x1.ravel()]
    y_predict = model.predict(x_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    pyplot.contourf(x0,x1,zz,cmap=custom_cmap)

繪製邏輯迴歸的決策邊界:code

plot_decision_boundary(logic_reg,axis=[4,7.5,1.5,4.5])
pyplot.scatter(X[y==0,0],X[y==0,1],color='blue')
pyplot.scatter(X[y==1,0],X[y==1,1],color='red')
pyplot.show()

繪製K近鄰算法的決策邊界:orm

from mylib import KNN

knn_clf_all = KNN.KNNClassifier(k=3)
knn_clf_all.fit(iris.data[:,:2],iris.target)

plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5])
pyplot.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1])
pyplot.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1])
pyplot.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1])
pyplot.show()

k近鄰多分類(種類爲3)下的決策邊界
k取3時:
blog

k取50時:
ci

相關文章
相關標籤/搜索