JDK提供了一個工具類Executors來很是方便的建立線程池,下面主要經過一個示例來分析Java線程池的實現原理。java
Runnable runnable = new Runnable() { @Override public void run() { // do something } }; ExecutorService executorService = Executors.newFixedThreadPool(2); executorService.submit(runnable); executorService.shutdown();
例子裏面使用了Executors.newFixedThreadPool(2)建立了一個固定只有2個線程的線程池,返回了一個ExecutorService對象,而後調用executorService.submit()方法來啓動一個線程,最後調用executorService.shutdown()來關閉線程池。編程
使用起來很是的方便,接下來經過深刻源代碼看一下背後的原理。併發
看一下ExecutorService的定義異步
public interface ExecutorService extends Executor { void shutdown(); List<Runnable> shutdownNow(); boolean isShutdown(); boolean isTerminated(); boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException; <T> Future<T> submit(Callable<T> task); <T> Future<T> submit(Runnable task, T result); Future<?> submit(Runnable task); ... }
ExecutorService繼承自Executoride
public interface Executor { void execute(Runnable command); }
列出了一部分的接口,主要是提供了幾個啓動線程執行線程任務的方法,接收不一樣的參數,以及關閉線程池的方法。submit方法接收Runnable或者Callable方法,返回一個Future對象用於異步獲取執行結果。execute方法只接收一個Runnable參數,而且沒有返回值。工具
再看一下Executors工具類的定義oop
public class Executors { public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newWorkStealingPool() { return new ForkJoinPool (Runtime.getRuntime().availableProcessors(), ForkJoinPool.defaultForkJoinWorkerThreadFactory, null, true); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } ... }
大體是這個樣子的,這裏列出了一部分,提供了建立固定線程數的線程池(newFixedThreadPool),工做竊取的線程池(newWorkStealingPool),單個線程的線程池(newSingleThreadExecutor),不知道怎麼稱呼的線程池(newCachedThreadPool)。源碼分析
以FixedThreadPool爲例一探究竟,看一下FixedThreadPool返回的 ThreadPoolExecutor到底是什麼東西學習
public class ThreadPoolExecutor extends AbstractExecutorService {...} public abstract class AbstractExecutorService implements ExecutorService { ... protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); } public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } ... }
ThreadPoolExecutor繼承自AbstractExecutorService,AbstractExecutorService是一個實現了ExecutorService的抽象類。ui
抽象類中提供了submit方法的具體實現,將傳入的Runnable或者Callable方法經過newTaskFor方法轉換成一個FutureTask對象(它是RunnableFuture)的實現類,而後調用父類的execute方法執行任務,最終返回runnableFuture對象。從這能夠看出來ExecutorService.submit()方法內部仍是經過調用Executor.execute()方法來執行的,只是將參數轉換成一個Future對象,經過Future對象來獲取執行結果。
/** * The runState provides the main lifecycle control, taking on values: * * RUNNING: Accept new tasks and process queued tasks * SHUTDOWN: Don't accept new tasks, but process queued tasks * STOP: Don't accept new tasks, don't process queued tasks, * and interrupt in-progress tasks * TIDYING: All tasks have terminated, workerCount is zero, * the thread transitioning to state TIDYING * will run the terminated() hook method * TERMINATED: terminated() has completed * * The numerical order among these values matters, to allow * ordered comparisons. The runState monotonically increases over * time, but need not hit each state. The transitions are: * * RUNNING -> SHUTDOWN * On invocation of shutdown(), perhaps implicitly in finalize() * (RUNNING or SHUTDOWN) -> STOP * On invocation of shutdownNow() * SHUTDOWN -> TIDYING * When both queue and pool are empty * STOP -> TIDYING * When pool is empty * TIDYING -> TERMINATED * When the terminated() hook method has completed */ private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); private static final int COUNT_BITS = Integer.SIZE - 3; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl private static int runStateOf(int c) { return c & ~CAPACITY; } private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; }
定義了5種線程池的狀態
有5種狀態變化的流程
AtomicInteger類型的ctl變量存着當前worker(Worker是一個內部類,下面會詳細解釋)的數量。
ThreadPoolExecutor用一個32位整型的高3位表示運行的狀態,剩下的29位表示能夠支持的線程數。
COUNT_BITS 爲32-3 = 29, 好比 RUNNING 是 -1 << COUNT_BITS,即-1帶符號位左移29位,就是101000...0,STOP爲001000...0,TIDYING爲010000...0。
CAPACITY 爲 (1 << COUNT_BITS) - 1,1左移29位以後-1,最後的結果位 0001111...1,最高3位是0 剩下的29位都是1。
workerCountOf(int c) 用來計算當前線程數,用的方法是 c & CAPACITY 即 c & 0001111...1,取除了高3位的剩下29位來判斷。
runStateOf(int c) 用來查看當前的線程狀態, c & ~CAPACITY 即 c & 1110000...0,取高3位來判斷。
private final BlockingQueue<Runnable> workQueue; private final ReentrantLock mainLock = new ReentrantLock(); private final HashSet<Worker> workers = new HashSet<Worker>(); private final Condition termination = mainLock.newCondition(); private int largestPoolSize; private long completedTaskCount; private volatile ThreadFactory threadFactory; private volatile RejectedExecutionHandler handler; private volatile long keepAliveTime; private volatile boolean allowCoreThreadTimeOut; private volatile int corePoolSize; private volatile int maximumPoolSize; private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); private static final RuntimePermission shutdownPerm = new RuntimePermission("modifyThread");
在來看一些其餘的全局屬性。workerQueue 一個BlockingQueue存放Runnable對象,workers 一個HashSet存放Worker對象,還有一些corePoolSize maximumPoolSize等就是平時配置鏈接池的參數。
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
Executors提供的newFIxedThreadPool方法其實建立的是一個ThreadPoolExecutor對象,以 newFixedPoolSize(2) 爲例,經過將corePoolSize maximumPoolSize都是設置爲2來實現固定數量的線程池。keepAliveTime設置爲0微秒。workerQueue傳入了一個LinkedBlockingQueue對象。
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
通讀幾遍代碼加上上面的註釋,基本能夠理解整個方法的意思。主要的思想是
註釋中的第二點作了不少檢查,將任務加到等待隊列以後還要作一次檢查看看是否須要建立Worker,防止以前建立的Worker已經出現異常中止了。不理解不要緊,不影響對線程池原理的學習。
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
第一個for循環檢查線程數有沒有超過corePoolSize或者maximunPoolSize。過了這個for循環以後就是建立Worker的地方了
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } public void run() { runWorker(this); } ... }
Worker 類繼承自 AbstractQueuedSynchronizer 實現了 Runnable接口, AbstractQueuedSynchronizer 這個玩意特別厲害,是併發編程的核心類,因爲內容很是多本文不做解析。Worker類中維護了一個Thread對象,存了當前運行的線程,還維護了一個Runnable對象(firstTask),存了當前線程須要執行的對象。再回顧addWorker方法,其實就是用傳入的firstTask參數建立一個Worker對象,並使worker對象啓動一個線程去執行firstTask。重點在Worker對象的run方法,調用了一個runWorker(this)方法。
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
runWorker方法接受一個Worker參數,將參數裏面的firstTask拿出來,而後調用 task.run() 方法直接運行這個task,運行完將task變量設置爲null。而後這裏有一個while循環 while (task != null || (task = getTask()) != null),當task等於null的時候調用getTask()獲取任務。
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
getTask()方法裏面有一個死循環,boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; timed變量判斷wc變量是否大於corePoolSize (allowCoreThreadTimeOut 默認爲 false)。而後下面有一行代碼判斷timed時候爲ture,若是爲true,調用 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS),不然調用workQueue.take(),從等待隊列中獲取等待被處理的線程,而後返回出去。poll和take的區別是 當隊列裏面沒有數據的時候poll立刻返回false,而take會堵塞當前線程直到隊列裏面有數據。這裏解釋了爲何線程池可以維持線程不釋放。
當設置了corePoolSize的時候,這個參數表明了可以運行的線程數,當用戶執行submit方法的時候首先會去判斷當前線程數有沒有達到corePoolSize,若是沒有達到,就建立Worker對象並啓動線程執行任務,一個對象內維護一個線程,當線程數超過corePoolSize的時候,用戶執行submit方法的時候只是將任務放到等待隊列裏面,核心線程不斷從等待隊列裏面取出任務執行,沒有任務的時候一直被堵塞住,當有任務來的時候直接取出執行,避免了不斷建立線程帶來的開銷,以及增長了系統資源的利用率。