洛谷P4319 變化的道路

題意:給定圖,每條邊都有一段存在時間。求每段時間的最小生成樹。ide

解:動態MST什麼毒瘤...洛谷上仍是藍題...this

線段樹分治 + lct維護最小生成樹。spa

對時間開線段樹,每條邊的存在時間在上面會對應到logn個區間。code

咱們先把這些邊加到線段樹對應節點上,可是不在lct上面加。最後掃一遍線段樹。blog

掃到一個節點的時候把當前節點上的邊加入lct,同時記錄作了什麼操做。回溯的時候還原操做。get

最小生成樹的權值不用lct維護子樹和,直接用一個變量,加邊刪邊的時候跟着修改便可。it

這樣複雜度就是nlog2n的...雖然常數上天了。io

注意一下就是,回溯操做的時候順序必須嚴格倒序。不然會出現一些狀況致使re。event

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <vector>
  4 
  5 typedef long long LL;
  6 const int N = 500010, lm = 32766;
  7 
  8 int fa[N], s[N][2], large[N], p[N], top;
  9 bool rev[N];
 10 LL val[N];
 11 
 12 inline void pushup(int x) {
 13     large[x] = x;
 14     if(s[x][0] && val[large[x]] < val[large[s[x][0]]]) {
 15         large[x] = large[s[x][0]];
 16     }
 17     if(s[x][1] && val[large[x]] < val[large[s[x][1]]]) {
 18         large[x] = large[s[x][1]];
 19     }
 20     return;
 21 }
 22 
 23 inline void pushdown(int x) {
 24     if(rev[x]) {
 25         std::swap(s[x][0], s[x][1]);
 26         if(s[x][0]) {
 27             rev[s[x][0]] ^= 1;
 28         }
 29         if(s[x][1]) {
 30             rev[s[x][1]] ^= 1;
 31         }
 32         rev[x] = 0;
 33     }
 34     return;
 35 }
 36 
 37 inline bool no_root(int x) {
 38     return (s[fa[x]][0] == x) || (s[fa[x]][1] == x);
 39 }
 40 
 41 inline void rotate(int x) {
 42     int y = fa[x];
 43     int z = fa[y];
 44     bool f = (s[y][1] == x);
 45 
 46     fa[x] = z;
 47     if(no_root(y)) {
 48         s[z][s[z][1] == y] = x;
 49     }
 50     s[y][f] = s[x][!f];
 51     if(s[x][!f]) {
 52         fa[s[x][!f]] = y;
 53     }
 54     s[x][!f] = y;
 55     fa[y] = x;
 56 
 57     pushup(y);
 58     return;
 59 }
 60 
 61 inline void splay(int x) {
 62     int y = x;
 63     p[++top] = y;
 64     while(no_root(y)) {
 65         y = fa[y];
 66         p[++top] = y;
 67     }
 68     while(top) {
 69         pushdown(p[top]);
 70         top--;
 71     }
 72 
 73     y = fa[x];
 74     int z = fa[y];
 75     while(no_root(x)) {
 76         if(no_root(y)) {
 77             (s[z][1] == y) ^ (s[y][1] == x) ?
 78             rotate(x) : rotate(y);
 79         }
 80         rotate(x);
 81         y = fa[x];
 82         z = fa[y];
 83     }
 84     pushup(x);
 85     return;
 86 }
 87 
 88 inline void access(int x) {
 89     int y = 0;
 90     while(x) {
 91         splay(x);
 92         s[x][1] = y;
 93         pushup(x);
 94         y = x;
 95         //printf("fa %d = %d \n", x, fa[x]);
 96         x = fa[x];
 97     }
 98     return;
 99 }
100 
101 inline void make_root(int x) {
102     access(x);
103     splay(x);
104     rev[x] = 1;
105     return;
106 }
107 
108 inline int find_root(int x) {
109     access(x);
110     splay(x);
111     while(s[x][0]) {
112         x = s[x][0];
113         pushdown(x);
114     }
115     return x;
116 }
117 
118 inline void link(int x, int y) {
119     //printf("link %d %d \n", x, y);
120     make_root(x);
121     fa[x] = y;
122     return;
123 }
124 
125 inline void cut(int x, int y) {
126     //printf("cut %d %d \n", x, y);
127     make_root(x);
128     access(y);
129     splay(y);
130     s[y][0] = fa[x] = 0;
131     pushup(y);
132     return;
133 }
134 
135 inline int getMax(int x, int y) {
136     make_root(x);
137     access(y);
138     splay(y);
139     return large[y];
140 }
141 // lct OVER
142 
143 struct Edge {
144     int u, v;
145     LL val;
146     Edge(int x = 0, int y = 0, LL z = 0) {
147         u = x;
148         v = y;
149         val = z;
150     }
151 }edge[N];
152 
153 struct Node {
154     bool f; // 0 link 1 cut
155     int x;
156     Node(bool F = 0, int X = 0) {
157         f = F;
158         x = X;
159     }
160 };
161 
162 std::vector<int> id[N];
163 std::vector<Node> v[N];
164 int n;
165 LL Sum;
166 
167 void add(int L, int R, int v, int l, int r, int o) {
168     if(L <= l && r <= R) {
169         id[o].push_back(v);
170         return;
171     }
172     int mid = (l + r) >> 1;
173     if(L <= mid) {
174         add(L, R, v, l, mid, o << 1);
175     }
176     if(mid < R) {
177         add(L, R, v, mid + 1, r, o << 1 | 1);
178     }
179     return;
180 }
181 
182 void solve(int l, int r, int o) {
183     //printf("solve %d %d %d \n", l, r, o);
184     for(int i = 0; i < id[o].size(); i++) {
185         int t = id[o][i];
186         int x = edge[t].u, y = edge[t].v;
187         int p = getMax(x, y);
188         if(val[p] < edge[t].val) {
189             continue;
190         }
191         cut(edge[p].u, p);
192         cut(edge[p].v, p);
193         link(x, t);
194         link(y, t);
195         v[o].push_back(Node(1, p));
196         v[o].push_back(Node(0, t)); // pay attention! this must be behind
197         Sum -= val[p];
198         Sum += val[t];
199         //printf(" > push %d %d \n", t, p);
200     }
201     if(l == r) {
202         printf("%lld\n", Sum + 1);
203     }
204     else {
205         int mid = (l + r) >> 1;
206         solve(l, mid, o << 1);
207         solve(mid + 1, r, o << 1 | 1);
208     }
209     //printf(" -- solve %d %d %d \n", l, r, o);
210     for(int i = v[o].size() - 1; i >= 0; i--) { // this must be sleep
211         int t = v[o][i].x;
212         if(v[o][i].f) {
213             link(edge[t].u, t);
214             link(edge[t].v, t);
215             Sum += val[t];
216         }
217         else {
218             cut(edge[t].u, t);
219             cut(edge[t].v, t);
220             Sum -= val[t];
221         }
222         //printf(" -- > pop %d \n", t);
223     }
224     v[o].clear();
225     return;
226 }
227 
228 int main() {
229 
230     scanf("%d", &n);
231     LL z;
232     for(int i = 1, x, y; i < n; i++) {
233         scanf("%d%d%lld", &x, &y, &z);
234         val[n + i] = z;
235         link(x, n + i);
236         link(n + i, y);
237         edge[n + i].u = x;
238         edge[n + i].v = y;
239         edge[n + i].val = z;
240         Sum += z;
241     }
242     int m;
243     scanf("%d", &m);
244     for(int i = 1, l, r; i <= m; i++) {
245         int t = 2 * n + i;
246         scanf("%d%d%lld%d%d", &edge[t].u, &edge[t].v, &edge[t].val, &l, &r);
247         val[t] = edge[t].val;
248         add(l, r, t, 1, lm, 1);
249     }
250 
251     solve(1, lm, 1);
252 
253     return 0;
254 }
AC代碼
相關文章
相關標籤/搜索