一 。hive簡介html
hive是基於hadoop文件系統的大數據分析工具,可以輕鬆實現數據彙總 點對點查詢 大批量數據分析等 使用傳統的SQL語法 提供了UDF 用戶自定義函數來分析統計數據。
hive的數據組成:
數據庫(Databases) 相似於 mysql的數據庫 用於將不一樣表進行區分的命名空間;
表(Table) ddl表預先定義列名和數據的格式 dml操做帶有行和列的數據集;
分區(Partitions) 根據特定的列進行分區 數據會被寫到文件系統不一樣的分區目錄;
桶 Buckets (or Clusters) 定義hash的桶的個數和列 插入數據時根據列的值%桶的個數 決定文件寫入哪一個文件java
hive架構:#aaaanode
hive啓動將表結構數據存儲在derby或者其餘數據庫中,將數據行存儲在hdfs文件系統中 客戶端經過jdbc或者對應客戶端發起查詢時 hive將對應sql結構分析後 經過metastore(表結構)優化後轉換成mapreduce任務執行 返回結果(圖片摘自網絡)mysql
hive適用於少許用戶統計查詢數據 不適用於大批量用戶請求linux
二。 hive安裝web
1》hive單機安裝(參考官方wiki https://cwiki.apache.org/confluence/display/Hive/Home)sql
hive使用hadoop來存儲數據必須擁有hadoop環境 使用關係型數據庫存儲表結構數據 hive內置了derby數據庫 默認使用derby 須要搭建hadoop集羣mongodb
環境參考http://blog.csdn.net/liaomin416100569/article/details/78360734環境shell
主機信息數據庫
/etc/hosts 192.168.58.147 node1 192.168.58.149 node2 192.168.58.150 node3 192.168.58.151 node4
節點信息
namenode node1 nameserviceid:node1 node2 nameserviceid:node2 secondarynode node1 node2 DataNodes node2 node3 node4 Resource Manager node1 NodeManger node2 node3 node4
我這裏是fendration因此 將node1的core-site.xml 默認dfs修改爲本機非viewfs
<property> <name>fs.defaultFS</name> <value>hdfs://node1</value> </property>
hive單機還 安裝在node1節點上
安裝jdk1.7以上版本(安裝過hadoop因此有了)
下載hive版本 apache-hive-2.2.0-bin.tar.gz (hive.apache.org)
解壓hive安裝包到: /soft/hive-2.2.0
/etc/profile添加
HIVE_HOME=/soft/hive-2.2.0 export HIVE_HOME PATH=$PATH:${HIVE_HOME}/bin export PATH
執行命令 馬上生效
source /etc/profile
node1的hdfs上建立幾個目錄用於存儲數據
hdfs上建立關鍵目錄 hdfs dfs -mkdir /tmp hdfs dfs -mkdir -p /user/hive/warehouse hdfs dfs -chmod g+w /tmp hdfs dfs -chmod g+w /user/hive/warehouse
單機方式metadata文件只能同一時間一個用戶同時訪問 該方式不啓用任何端口 鏈接就直接訪問元數據和文件系統(hive要讀取hadoop知道hdfs默認地址因此必須配置HADOOP_HOME)
內嵌數據庫 derby管理元數據
將 $HIVE_HOME/conf/metastore_db 刪除或者 備份爲其餘名字
mv $HIVE_HOME/conf/metastore_db $HIVE_HOME/conf/metastore_db_tmp
能夠經過 /conf目錄下的hive-default.xml.template下查看到如下四個選項 分別是jdbc的url 驅動類 用戶名和密碼
<property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:derby:;databaseName=metastore_db;create=true</value> 默認使用derby管理元數據 <description> JDBC connect string for a JDBC metastore. To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL. For example, jdbc:postgresql://myhost/db?ssl=true for postgres database. </description> </property> <name>javax.jdo.option.ConnectionPassword</name> <value>mine</value> <description>password to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>APP</value> <description>Username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>org.apache.derby.jdbc.EmbeddedDriver</value> <description>Driver class name for a JDBC metastore</description> </property>
若是有須要將元數據存儲在其餘的數據庫中 能夠將驅動jar包 置於 ${HIVE_HOME}/lib目錄下 修改這四個值爲對應數據庫便可
hive支持的數據庫經過如下方式查看
[root@node1 upgrade]# pwd /soft/hive-2.2.0/scripts/metastore/upgrade [root@node1 upgrade]# ll total 24 drwxr-xr-x 2 root root 89 Oct 27 01:39 azuredb drwxr-xr-x 2 root root 4096 Oct 27 01:39 derby drwxr-xr-x 2 root root 4096 Oct 27 01:39 mssql drwxr-xr-x 2 root root 4096 Oct 27 01:39 mysql drwxr-xr-x 2 root root 4096 Oct 27 01:39 oracle drwxr-xr-x 2 root root 4096 Oct 27 01:39 postgres
初始化 hive 使用內置的derby管理元數據 (也就是表結構數據)
schematool -dbType derby -initSchema
初始化成功使用hive命令 進入客戶端控制
hive
能夠使用相似mysql的語法建立數據庫 操做表等
若是過程當中發現沒法鏈接等問題 能夠直接查看hive-log4j2.properties.template 查看日誌文件在哪裏
默認位置是:property.hive.log.dir = ${sys:java.io.tmpdir}/${sys:user.name}
也就是/tmp/root目錄 下面有個文件是 hive.log
2》hive服務器(hiveserver2+beeline)安裝
hive服務器模式是啓動一個端口 對外發布 多個客戶端經過jdbcapi 登陸該端口進行統計查詢 該模式適用於多用戶模式
順便這裏演示一下 將元數據保存在mysql中
好比本機window mysql數據庫 192.168.58.1 3306 root 123456
$HIVE_HOME/conf目錄下新建文件 hive-site.xml 拷貝四要素 並修改成mysql
configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://192.168.58.1:3306/metadb</value> <description> JDBC connect string for a JDBC metastore. To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL. For example, jdbc:postgresql://myhost/db?ssl=true for postgres database. </description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>123456</value> <description>password to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>root</value> <description>Username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> </configuration>
拷貝mysql驅動包 到 ${HIVE_HOME}/lib目錄下
58.1 mysql數據庫上建立數據庫 metadb
create database metadb
node1執行初始化metadb
[root@node1 lib]# schematool -dbType mysql -initSchema SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/soft/hive-2.2.0/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Metastore connection URL: jdbc:mysql://192.168.58.1:3306/metadb Metastore Connection Driver : com.mysql.jdbc.Driver Metastore connection User: root Starting metastore schema initialization to 2.1.0 Initialization script hive-schema-2.1.0.mysql.sql Initialization script completed
window機器上看出 metadb數據庫下是否多了一堆表
mysql> use metadb Database changed mysql> show tables; +---------------------------+ | Tables_in_metadb | +---------------------------+ | aux_table | | bucketing_cols | | cds | | columns_v2 | | compaction_queue | | completed_compactions | | completed_txn_components | | database_params | | db_privs | | dbs | | delegation_tokens | | func_ru | | funcs | | global_privs | | hive_locks | | idxs | | index_params | | key_constraints | | master_keys | | next_compaction_queue_id | | next_lock_id | | next_txn_id | | notification_log | | notification_sequence | | nucleus_tables | | part_col_privs | | part_col_stats | | part_privs | | partition_events | | partition_key_vals | | partition_keys | | partition_params | | partitions | | role_map | | roles | | sd_params | | sds | | sequence_table | | serde_params | | serdes | | skewed_col_names | | skewed_col_value_loc_map | | skewed_string_list | | skewed_string_list_values | | skewed_values | | sort_cols | | tab_col_stats | | table_params | | tbl_col_privs | | tbl_privs | | tbls | | txn_components | | txns | | type_fields | | types | | version | | write_set | +---------------------------+ 57 rows in set (0.01 sec)
確保當前機器存在hadoop安裝 而且全部hadoop和yarn必須啓動如下配置是hadoop的一種代理機制
修改hadoop的core-site.xml
<property> <name>hadoop.proxyuser.用戶名.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.用戶名.groups</name> <value>*</value> </property>
用戶名能夠隨便取 *表示hadoop集羣中全部機器的用戶 能夠使用本身指定的用戶名假裝代理 就至關於我有了工牌 就不用報名字了
hive默認使用的是匿名帳號沒有任何權限 全部鏈接時 配置一個代理用戶 -n 代理用戶 就能夠訪問hadoop下全部文件了 代理
用戶 相關 參考(http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/Superusers.html)
我假設hive鏈接是 root
<property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property>
node1(58.147)啓動服務
hiveserver2
默認啓動端口10000(用於jdbc鏈接) 10002是web監控界面
其餘機器上也安裝一個hive
beeline -u jdbc:hive2://192.168.58.147:10000 -n root 使用root用戶鏈接 建立表 查詢測試
注意 yarn和hadoop必定要所有啓動 (jps查看) 由於測試插入數據 調用mapreduce
客戶端測試
[root@node2 bin]# beeline -u jdbc:hive2://192.168.58.147:10000 -n root SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/soft/hive-2.2.0/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Connecting to jdbc:hive2://192.168.58.147:10000 Connected to: Apache Hive (version 2.2.0) Driver: Hive JDBC (version 2.2.0) Transaction isolation: TRANSACTION_REPEATABLE_READ Beeline version 2.2.0 by Apache Hive 0: jdbc:hive2://192.168.58.147:10000> show databases; +----------------+--+ | database_name | +----------------+--+ | default | | test | +----------------+--+ 2 rows selected (4.615 seconds) 0: jdbc:hive2://192.168.58.147:10000> drop database test; Error: Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. InvalidOperationException(message:Database test is not empty. One or more tables exist.) (state=08S01,code=1) 0: jdbc:hive2://192.168.58.147:10000> create database hello; No rows affected (0.96 seconds) 0: jdbc:hive2://192.168.58.147:10000> use hello; No rows affected (0.252 seconds) 0: jdbc:hive2://192.168.58.147:10000> create table tt(id int,name string); No rows affected (1.403 seconds) 0: jdbc:hive2://192.168.58.147:10000> insert into tt values(1,'zs'); WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. No rows affected (45.633 seconds) 0: jdbc:hive2://192.168.58.147:10000> select * from tt; +--------+----------+--+ | tt.id | tt.name | +--------+----------+--+ | 1 | zs | +--------+----------+--+ 1 row selected (1.515 seconds)
在hiveserver2控制檯 看到插入數據會啓動mapreduce
測試成功。。。。
使用help查看全部beeline全部幫助
Beeline version 2.2.0 by Apache Hive beeline> help !addlocaldriverjar Add driver jar file in the beeline client side. !addlocaldrivername Add driver name that needs to be supported in the beeline client side. !all Execute the specified SQL against all the current connections !autocommit Set autocommit mode on or off !batch Start or execute a batch of statements !brief Set verbose mode off !call Execute a callable statement !close Close the current connection to the database !closeall Close all current open connections !columns List all the columns for the specified table !commit Commit the current transaction (if autocommit is off) !connect Open a new connection to the database. !dbinfo Give metadata information about the database !describe Describe a table !dropall Drop all tables in the current database !exportedkeys List all the exported keys for the specified table !go Select the current connection !help Print a summary of command usage !history Display the command history !importedkeys List all the imported keys for the specified table !indexes List all the indexes for the specified table !isolation Set the transaction isolation for this connection !list List the current connections !manual Display the BeeLine manual !metadata Obtain metadata information !nativesql Show the native SQL for the specified statement !nullemptystring Set to true to get historic behavior of printing null as empty string. Default is false. !outputformat Set the output format for displaying results (table,vertical,csv2,dsv,tsv2,xmlattrs,xmlelements, and deprecated formats(csv, tsv)) !primarykeys List all the primary keys for the specified table !procedures List all the procedures !properties Connect to the database specified in the properties file(s) !quit Exits the program !reconnect Reconnect to the database !record Record all output to the specified file !rehash Fetch table and column names for command completion !rollback Roll back the current transaction (if autocommit is off) !run Run a script from the specified file !save Save the current variabes and aliases !scan Scan for installed JDBC drivers !script Start saving a script to a file !set Set a beeline variable !sh Execute a shell command !sql Execute a SQL command !tables List all the tables in the database !typeinfo Display the type map for the current connection !verbose Set verbose mode on Comments, bug reports, and patches go to ???
退出命令 !quit
3》hcatalog非交互客戶端
首先沿用2章節 hiveserver2的metastore
hcatalog能夠直接在命令行直接執行sql 主要用執行ddl語句
建立日誌目錄
mkdir -p /soft/hive-2.2.0/hcatalog/var/log
啓動服務
[root@node1 sbin]# ./hcat_server.sh start Started metastore server init, testing if initialized correctly... Metastore initialized successfully on port[9083].
當前機器使用 命令
[root@node1 bin]# ./hcat -e "create table ggg(id int,name string)"
使用hive查看是否建立表
[root@node1 log]# hive which: no hbase in (/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin:/root/mongodb-linux-x86_64-rhel70-3.4.9/bin:/soft/hadoop-2.7.4/bin:/soft/hadoop-2.7.4/sbin:/soft/hive-2.2.0/bin) SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/soft/hive-2.2.0/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.4/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Logging initialized using configuration in jar:file:/soft/hive-2.2.0/lib/hive-common-2.2.0.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. hive> show databases; OK default hello test Time taken: 3.325 seconds, Fetched: 3 row(s) hive> show tables; OK ggg Time taken: 0.209 seconds, Fetched: 1 row(s) hive> desc ggg; OK id int name string Time taken: 0.926 seconds, Fetched: 2 row(s)
其餘用法參考(https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat)
hcatalog只支持單機訪問 若是須要遠程 必須搭配webhcat服務
webhcat支持rest風格url操做hive
具體參考
安裝 https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-ConfigurationManagementOverview
介紹https://cwiki.apache.org/confluence/display/Hive/WebHCat+UsingWebHCat