Given a string S and a string T, count the number of distinct subsequences ofT inS.java
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie,"ACE"
is a subsequence of"ABCDE"
while "AEC"
is not).算法
Here is an example:
S = "rabbbit"
, T = "rabbit"
數據結構
Return 3
.spa
簡單翻譯一下,給定兩個字符串S和T,求S有多少個不一樣的子串與T相同。S的子串定義爲在S中任意去掉0個或者多個字符造成的串。.net
遞歸求解:翻譯
首先找到在S中與T的第一個字符相同的字符,從這個字符開始,遞歸地求S和T剩下的串。T爲空串時,返回1。由於空串自己是另一個串的一個子序列。這個算法實現簡單,可是果真不出意料,大集合超時。code
Java代碼:orm
1 public int numDistinct(String S, String T) { 2 // Start typing your Java solution below 3 // DO NOT write main() function 4 if (S.length() == 0) { 5 return T.length() == 0 ? 1 : 0; 6 } 7 if (T.length() == 0) { 8 return 1; 9 } 10 int cnt = 0; 11 for (int i = 0; i < S.length(); i++) { 12 if (S.charAt(i) == T.charAt(0)) { 13 cnt += numDistinct(S.substring(i + 1), T.substring(1)); 14 } 15 } 16 return cnt; 17 }
遇到這種兩個串的問題,很容易想到DP。可是這道題的遞推關係不明顯。能夠先嚐試作一個二維的表int[][] dp,用來記錄匹配子序列的個數(以S ="rabbbit"
,T = "rabbit"
爲例):blog
r a b b b i t遞歸
1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3
從這個表能夠看出,不管T的字符與S的字符是否匹配,dp[i][j] = dp[i][j - 1].就是說,假設S已經匹配了j - 1個字符,獲得匹配個數爲dp[i][j - 1](即若S[j]!=T[i],則該出現次數等於T[0-i]在S[0-(j-1)]出現的次數).如今不管S[j]是否是和T[i]匹配,匹配的個數至少是dp[i][j - 1]。除此以外,當S[j]和T[i]相等時,咱們可讓S[j]和T[i]匹配,而後讓S[j - 1]和T[i - 1]去匹配(T[0-(i-1)]在S[0-(j-1)]出現的次數*(T[i]==S[j])=1)
因此遞推關係爲:
dp[0][0] = 1; // T和S都是空串.
dp[0][1 ... S.length() - 1] = 1; // T是空串,S只有一種子序列匹配。
dp[1 ... T.length() - 1][0] = 0; // S是空串,T不是空串,S沒有子序列匹配。
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0).1 <= i <= T.length(), 1 <= j <= S.length()
1 class Solution { 2 public: 3 int numDistinct(string S, string T) { 4 if(S.empty()||T.empty()) return 0; 5 if(S.length()<T.length()) return 0; 6 int dp[T.length()+1][S.length()+1]; 7 dp[0][0]=1; 8 for(int i=1;i<=T.length();i++){ 9 dp[i][0]=0; 10 } 11 for(int j=1;j<=S.length();j++){ 12 dp[0][j]=1; 13 } 14 for(int i=1;i<=T.length();i++){ 15 for(int j=1;j<=S.length();j++){ 16 dp[i][j]=dp[i][j-1]; 17 if(T[i-1]==S[j-1]) 18 dp[i][j]+=dp[i-1][j-1]; 19 } 20 } 21 return dp[T.length()][S.length()]; 22 } 23 };