from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() # 屬性 iris_X = iris.data # 類別 iris_y = iris.target # 數據集分爲訓練集和測試集 測試集佔總數據的 30% X_train,X_test,y_train,y_test = train_test_split(iris_X,iris_y,test_size=0.5) # 定義模型 knn = KNeighborsClassifier() # 訓練模型 knn.fit(X_train,y_train) # 預測 test = knn.predict(X_test) res = y_test print(test) print(res)
# 預測結果:python
[2 0 0 1 1 1 1 0 2 0 1 2 2 2 2 1 1 2 2 0 1 1 1 1 0 1 2 2 0 1 1 2 2 0 1 0 2
0 0 2 1 2 0 2 1 2 2 1 0 0 0 2 1 0 1 1 0 2 1 2 0 2 2 0 0 1 1 0 1 1 1 2 2 0
0]
[2 0 0 1 1 1 1 0 2 0 1 2 2 2 2 1 1 2 2 0 1 1 1 1 0 1 2 2 0 1 1 2 1 0 1 0 2
0 0 2 1 2 0 2 1 2 2 1 0 0 0 2 1 0 1 1 0 2 1 2 0 2 2 0 0 1 1 0 1 1 1 2 2 0
0]
測試