數組的特色是:尋址容易,插入和刪除困難;而鏈表的特色是:尋址困難,插入和刪除容易。那麼咱們能不能綜合二者的特性,作出一種尋址容易,插入刪除也容易的數據結構?答案是確定的,這就是咱們要提起的哈希表,哈希表有多種不一樣的實現方法,我接下來解釋的是最經常使用的一種方法—— 拉鍊法,咱們能夠理解爲「鏈表的數組」 ,如圖:java
從上圖咱們能夠發現哈希表是由數組+鏈表組成的,一個長度爲16的數組中,每一個元素存儲的是一個鏈表的頭結點。那麼這些元素是按照什麼樣的規則存儲到數組中呢。通常狀況是經過hash(key)%len得到,也就是元素的key的哈希值對數組長度取模獲得。好比上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。因此十二、2八、108以及140都存儲在數組下標爲12的位置。算法
HashMap其實也是一個線性的數組實現的,因此能夠理解爲其存儲數據的容器就是一個線性數組。這可能讓咱們很不解,一個線性的數組怎麼實現按鍵值對來存取數據呢?這裏HashMap有作一些處理。數組
1.首先HashMap裏面實現一個靜態內部類Entry,其重要的屬性有 key , value, next,從屬性key,value咱們就能很明顯的看出來Entry就是HashMap鍵值對實現的一個基礎bean,咱們上面說到HashMap的基礎就是一個線性數組,這個數組就是Entry[],Map裏面的內容都保存在Entry[]裏面。數據結構
既然是線性數組,爲何能隨機存取?這裏HashMap用了一個小算法,大體是這樣實現:函數
//存儲時: int hash = key.hashCode();// 這個hashCode方法這裏不詳述,只要理解每一個key的hash是一個固定的int值 int index = hash % Entry[].length; Entry[index] = value; //取值時: int hash = key.hashCode(); int index = hash % Entry[].length; return Entry[index];
到這裏咱們輕鬆的理解了HashMap經過鍵值對實現存取的基本原理性能
3.疑問:若是兩個key經過hash%Entry[].length獲得的index相同,會不會有覆蓋的危險?優化
這裏HashMap裏面用到鏈式數據結構的一個概念。上面咱們提到過Entry類裏面有一個next屬性,做用是指向下一個Entry。打個比方, 第一個鍵值對A進來,經過計算其key的hash獲得的index=0,記作:Entry[0] = A。一會後又進來一個鍵值對B,經過計算其index也等於0,如今怎麼辦?HashMap會這樣作:B.next = A,Entry[0] = B,若是又進來C,index也等於0,那麼C.next = B,Entry[0] = C;這樣咱們發現index=0的地方其實存取了A,B,C三個鍵值對,他們經過next這個屬性連接在一塊兒。因此疑問不用擔憂。也就是說數組中存儲的是最後插入的元素。到這裏爲止,HashMap的大體實現,咱們應該已經清楚了。spa
固然HashMap裏面也包含一些優化方面的實現,這裏也說一下。好比:Entry[]的長度必定後,隨着map裏面數據的愈來愈長,這樣同一個index的鏈就會很長,會不會影響性能?HashMap裏面設置一個因素(也稱爲因子),隨着map的size愈來愈大,Entry[]會以必定的規則加長長度。.net
Java中hashmap的解決辦法就是採用的鏈地址法。code
package edu.sjtu.erplab.hash; public class Entry<K,V>{ final K key; V value; Entry<K,V> next;//下一個結點 //構造函數 public Entry(K k, V v, Entry<K,V> n) { key = k; value = v; next = n; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Entry)) return false; Entry e = (Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } }
package edu.sjtu.erplab.hash; //保證key與value不爲空 public class MyHashMap<K, V> { private Entry[] table;//Entry數組表 static final int DEFAULT_INITIAL_CAPACITY = 16;//默認數組長度 private int size; // 構造函數 public MyHashMap() { table = new Entry[DEFAULT_INITIAL_CAPACITY]; size = DEFAULT_INITIAL_CAPACITY; } //獲取數組長度 public int getSize() { return size; } // 求index static int indexFor(int h, int length) { return h % (length - 1); } //獲取元素 public V get(Object key) { if (key == null) return null; int hash = key.hashCode();// key的哈希值 int index = indexFor(hash, table.length);// 求key在數組中的下標 for (Entry<K, V> e = table[index]; e != null; e = e.next) { Object k = e.key; if (e.key.hashCode() == hash && (k == key || key.equals(k))) return e.value; } return null; } // 添加元素 public V put(K key, V value) { if (key == null) return null; int hash = key.hashCode(); int index = indexFor(hash, table.length); // 若是添加的key已經存在,那麼只須要修改value值便可 for (Entry<K, V> e = table[index]; e != null; e = e.next) { Object k = e.key; if (e.key.hashCode() == hash && (k == key || key.equals(k))) { V oldValue = e.value; e.value = value; return oldValue;// 原來的value值 } } // 若是key值不存在,那麼須要添加 Entry<K, V> e = table[index];// 獲取當前數組中的e table[index] = new Entry<K, V>(key, value, e);// 新建一個Entry,並將其指向原先的e return null; } }
package edu.sjtu.erplab.hash; public class MyHashMapTest { public static void main(String[] args) { MyHashMap<Integer, Integer> map = new MyHashMap<Integer, Integer>(); map.put(1, 90); map.put(2, 95); map.put(17, 85); System.out.println(map.get(1)); System.out.println(map.get(2)); System.out.println(map.get(17)); System.out.println(map.get(null)); } }
轉自隨緣121