圖數據庫 Nebula Graph 的數據模型和系統架構設計

Nebula Graph:一個開源的分佈式圖數據庫。做爲惟一可以存儲萬億個帶屬性的節點和邊的在線圖數據庫,Nebula Graph 不只可以在高併發場景下知足毫秒級的低時延查詢要求,還可以實現服務高可用且保障數據安全性。git

本篇主要介紹 Nebula Graph 的數據模型和系統架構設計。github

有向屬性圖 DirectedPropertyGraph

Nebula Graph 採用易理解的有向屬性圖來建模,也就是說,在邏輯上,圖由兩種圖元素構成:頂點和邊。算法

頂點 Vertex

在 Nebula Graph 中頂點由標籤 tag 和對應 tag 的屬性組構成, tag 表明頂點的類型,屬性組表明 tag 擁有的一種或多種屬性。一個頂點必須至少有一種類型,即標籤,也能夠有多種類型。每種標籤有一組相對應的屬性,咱們稱之爲 schema 。sql

如上圖所示,有兩種 tag 頂點:player 和 team。player 的 schema 有三種屬性 ID (vid),Name (sting)和 Age (int);team 的 schema 有兩種屬性 ID (vid)和 Name (string)。數據庫

和 Mysql 同樣,Nebula Graph 是一種強 schema 的數據庫,屬性的名稱和數據類型都是在數據寫入前肯定的。緩存

邊 Edge

在 Nebula Graph 中邊由類型和邊屬性構成,而 Nebula Graph 中邊均是有向邊,有向邊代表一個頂點( 起點 src )指向另外一個頂點( 終點 dst )的關聯關係。此外,在 Nebula Graph 中咱們將邊類型稱爲 edgetype ,每一條邊只有一種edgetype ,每種 edgetype 相應定義了這種邊上屬性的 schema 。安全

回到上面的圖例,圖中有兩種類型的邊,一種爲 player 指向 player 的 like 關係,屬性爲 likeness (double);另外一種爲 player 指向 team 的 serve 關係,兩個屬性分別爲 start_year (int) 和 end_year (int)。服務器

須要說明的是,起點1 和終點2 之間,能夠同時存在多條相同或者不一樣類型的邊。網絡

圖分割 GraphPartition

因爲超大規模關係網絡的節點數量高達百億到千億,而邊的數量更會高達萬億,即便僅存儲點和邊二者也遠大於通常服務器的容量。所以須要有方法將圖元素切割,並存儲在不一樣邏輯分片 partition 上。Nebula Graph 採用邊分割的方式,默認的分片策略爲哈希散列,partition 數量爲靜態設置並不可更改。架構

數據模型 DataModel

在 Nebula Graph 中,每一個頂點被建模爲一個 key-value ,根據其 vertexID(或簡稱 vid)哈希散列後,存儲到對應的 partition 上。

一條邏輯意義上的邊,在 Nebula Graph 中將會被建模爲兩個獨立的 key-value ,分別稱爲 out-key 和 in-key 。out-key 與這條邊所對應的起點存儲在同一個 partition 上,in-key 與這條邊所對應的終點存儲在同一個 partition 上。

關於數據模型的詳細設計會在後續的系列文章中介紹。

系統架構 Architecture

Nebula Graph 包括四個主要的功能模塊,分別是存儲層元數據服務計算層客戶端

存儲層 Storage

在 Nebula Graph 中存儲層對應進程是 nebula-storaged ,其核心爲基於 Raft(用來管理日誌複製的一致性算法) 協議的分佈式 Key-valueStorage 。目前支持的主要存儲引擎爲「Rocksdb」和「HBase」。Raft 協議經過 leader/follower 的方式,來保持數據之間的一致性。Nebula Storage 主要增長了如下功能和優化:

  1. Parallel Raft:容許多臺機器上的相同 partiton-id 組成一個 Raft group 。經過多組 Raft group 實現併發操做。
  2. Write Path & batch:Raft 協議的多機器間同步依賴於日誌 id 順序性,這樣的吞吐量 throughput 較低。經過批量和亂序提交的方式能夠實現更高的吞吐量。
  3. Learner:基於異步複製的 learner。當集羣中增長新的機器時,能夠將其先標記爲 learner,並異步從 leader/follower 拉取數據。當該 learner 追上 leader 後,再標記爲 follower,參與 Raft 協議。
  4. Load-balance:對於部分訪問壓力較大的機器,將其所服務的 partition 遷移到較冷的機器上,以實現更好的負載均衡。

元數據服務層 Metaservice

Metaservice 對應的進程是 nebula-metad ,其主要的功能有:

  1. 用戶管理:Nebula Graph 的用戶體系包括 Goduser , Admin , User , Guest  四種。每種用戶的操做權限不一。
  2. 集羣配置管理:支持上線、下線新的服務器。
  3. 圖空間管理:增持增長、刪除圖空間,修改圖空間配置(Raft副本數)
  4. Schema 管理:Nebula Graph 爲強 schema 設計。
  • 經過 Metaservice 記錄 Tag 和 Edge 的屬性的各字段的類型。支持的類型有:整型 int, 雙精度類型 double, 時間數據類型 timestamp, 列表類型 list等;
  • 多版本管理,支持增長、修改和刪除 schema,並記錄其版本號
  • TTL 管理,經過標識到期回收 time-to-live 字段,支持數據的自動刪除和空間回收

MetaService 層爲有狀態的服務,其狀態持久化方法與 Storage 層同樣經過 KVStore 方式存儲。

計算層 Query Engine & Query Language(nGQL)

計算層對應的進程是 nebula-graphd ,它由徹底對等無狀態無關聯的計算節點組成,計算節點之間相互無通訊。**Query Engine **層的主要功能,是解析客戶端發送 nGQL 文本,經過詞法解析 Lexer 和語法解析 Parser 生成執行計劃,並經過優化後將執行計劃交由執行引擎,執行引擎經過 MetaService 獲取圖點和邊的 schema,並經過存儲引擎層獲取點和邊的數據。Query Engine 層的主要優化有:

  1. 異步和併發執行:因爲 IO 和網絡均爲長時延操做,需採用異步及併發操做。此外,爲避免單個長 query 影響後續 query,Query Engine 爲每一個 query 設置單獨的資源池以保證服務質量 QoS。
  2. 計算下沉:爲避免存儲層將過多數據回傳到計算層佔用寶貴的帶寬,條件過濾 where 等算子會隨查詢條件一同下發到存儲層節點。
  3. 執行計劃優化:雖然在關係數據庫 SQL 中執行計劃優化已經經歷了長時間的發展,但業界對圖查詢語言的優化研究較少。Nebula Graph 對圖查詢的執行計劃優化進行了必定的探索,包括執行計劃緩存上下文無關語句併發執行

客戶端 API & Console

Nebula Graph 提供 C++、Java、Golang 三種語言的客戶端,與服務器之間的通訊方式爲 RPC,採用的通訊協議爲 Facebook-Thrift。用戶也可經過 Linux 上 console 實現對 Nebula Graph 操做。Web 訪問方式目前在開發過程當中。

Nebula Graph:一個開源的分佈式圖數據庫。

GitHub:https://github.com/vesoft-inc/nebula

知乎:https://www.zhihu.com/org/nebulagraph/posts

微博:https://weibo.com/nebulagraph

相關文章
相關標籤/搜索