使用json4s的框架,包括spark,flinkjava
對於本地支持,引入如下依賴項添加到pom中json
<dependency> <groupId>org.json4s</groupId> <artifactId>json4s-jackson_${scala.version}</artifactId> <version>{latestVersion}</version> </dependency>
對於jackson支持,引入如下依賴項添加到pom中數組
<dependency> <groupId>org.json4s</groupId> <artifactId>json4s-jackson_${scala.version}</artifactId> <version>{latestVersion}</version> </dependency>
json4s類型包括兩個10個類型和一個type類型對象安全
case object JNothing extends JValue // 'zero' for JValue case object JNull extends JValue case class JString(s: String) extends JValue case class JDouble(num: Double) extends JValue case class JDecimal(num: BigDecimal) extends JValue case class JInt(num: BigInt) extends JValue case class JLong(num: Long) extends JValue case class JBool(value: Boolean) extends JValue case class JObject(obj: List[JField]) extends JValue case class JArray(arr: List[JValue]) extends JValue type JField = (String, JValue)
JField再也不是JValue這意味着更高的類型安全性,由於再也不可能建立無效的JSON,例如 JFields 直接添加到JArrays中,此更改最明顯的結果是map、transform、find和filter有兩種版本:框架
def map(f: JValue => JValue): JValue def mapField(f: JField => JField): JValue def transform(f: PartialFunction[JValue, JValue]): JValue def transformField(f: PartialFunction[JField, JField]): JValue def find(p: JValue => Boolean): Option[JValue] def findField(p: JField => Boolean): Option[JField]
提取不嵌套的json串spa
import org.json4s._ import org.json4s.native.JsonMethods._ // parse解析返回值爲Jvalue scala> parse("""{"name":"Toy","price":35.35}""", useBigDecimalForDouble = true) res1: org.json4s.package.JValue = JObject(List((name,JString(Toy)), (price,JDecimal(35.35))))
提取json中的元素的值
1)單層嵌套取單值.net
//val parseJson: JValue = parse( """{"name":"Toy","price":35.35}""", useBigDecimalForDouble = true) val parseJson: JValue = parse( """{"name":"Toy","price":35.35}""") // 方法一:JString模式匹配方式 val JString(name) = (parseJson \ "name") println(name) //方法二:extract[String]提取值, val name:String = (parseJson \ "name").extract[String] // 直接提取內容(不安全) val name:Option[String] = (parseJson \ "name").extractOpt[String]// 返回Option類型(安全) val name: String = (parseJson \ "name").extractOrElse[String]("") // 設置默認值
2)多層嵌套套取單值scala
val parseJson: JValue = parse( """{"name":{"tome":"new"},"price":35.35}""", useBigDecimalForDouble = true) println(parseJson) // 方法一:逐層訪問 val value: String = (parseJson \ "name" \ "tome").extract[String] // 方法二:循環訪問 val value: String = (parseJson \\ "tome").extract[String]
解析提取數組的json串code
簡單值數組orm
// 解析列表 parse(""" { "numbers" : [1, 2, 3, 4] } """) res0: org.json4s.JsonAST.JValue = JObject(List((numbers,JArray(List(JInt(1), JInt(2), JInt(3), JInt(4)))))) // 程序解析 val listValue : List[BigInt] = for {JArray(child) <- jArray; JInt(value) <- child} yield value listValue.map(println)
嵌套數組json串解析
val json = parse( """ { "name": "joe", "children": [ { "name": "Mary", "age": 5 }, { "name": "Mazy", "age": 3 } ] } """) // 嵌套返回值 for (JArray(child) <- json) println(child) res0: List(JObject(List((name,JString(Mary)), (age,JInt(5)))), JObject(List((name,JString(Mazy)), (age,JInt(3))))) // 嵌套取數組中某個字段值 for { JObject(child) <- json JField("age", JInt(age)) <- child } yield age // 嵌套取數組中某個字段值,並添加過濾 for { JObject(child) <- json JField("name", JString(name)) <- child JField("age", JInt(age)) <- child if age > 4 } yield (name, age)
json和對象的轉換
/** json轉化爲對象(不帶外層字段) **/ case class ClassA(a: Int, b: Int) val json2: String = """[{"a":1,"b":2},{"a":1,"b":2}]""" val bb: List[ClassA] = parse(json2).extract[List[ClassA]] println(bb) /** json轉對象(帶外層字段名) */ case class ClassC(a: Int, b: Int) case class ClassB(c: List[ClassC]) val json3: String = """{"c":[{"a":1,"b":2},{"a":1,"b":2}]}""" val cc: ClassB = parse(json3).extract[ClassB] println(cc)
基本數據類型轉化爲普通json
1) 序列Seq轉化爲Json字符串
scala> val json = List(1, 2, 3) scala> compact(render(json)) res0: String = [1,2,3]
2) Tuple2[String, A] 類型轉化爲json字符串
scala> val json = ("name" -> "joe") scala> compact(render(json)) res1: String = {"name":"joe"}
3) ~ 合併object對象轉化爲json串
scala> val json = ("name" -> "joe") ~ ("age" -> 35) scala> compact(render(json)) res2: String = {"name":"joe","age":35}
4) option 類型轉化爲串
scala> val json = ("name" -> "joe") ~ ("age" -> Some(35)) scala> compact(render(json)) res3: String = {"name":"joe","age":35} scala> val json = ("name" -> "joe") ~ ("age" -> (None: Option[Int])) scala> compact(render(json)) res4: String = {"name":"joe"}
5) case class 類轉化爲Json串
object JsonExample extends App { import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ case class Winner(id: Long, numbers: List[Int]) case class Lotto(id: Long, winningNumbers: List[Int], winners: List[Winner], drawDate: Option[java.util.Date]) val winners = List(Winner(23, List(2, 45, 34, 23, 3, 5)), Winner(54, List(52, 3, 12, 11, 18, 22))) val lotto = Lotto(5, List(2, 45, 34, 23, 7, 5, 3), winners, None) val json = ("lotto" -> ("lotto-id" -> lotto.id) ~ ("winning-numbers" -> lotto.winningNumbers) ~ ("draw-date" -> lotto.drawDate.map(_.toString)) ~ ("winners" -> lotto.winners.map { w => (("winner-id" -> w.id) ~ ("numbers" -> w.numbers))})) println(compact(render(json))) }
1) 格式化json串
scala> pretty(render(JsonExample.json)) { "lotto":{ "lotto-id":5, "winning-numbers":[2,45,34,23,7,5,3], "winners":[{ "winner-id":23, "numbers":[2,45,34,23,3,5] },{ "winner-id":54, "numbers":[52,3,12,11,18,22] }] } }
2) 合併兩個json 串
scala> import org.json4s._ scala> import org.json4s.jackson.JsonMethods._ scala> val lotto1 = parse("""{ "lotto":{ "lotto-id":5, "winning-numbers":[2,45,34,23,7,5,3], "winners":[{ "winner-id":23, "numbers":[2,45,34,23,3,5] }] } }""") scala> val lotto2 = parse("""{ "lotto":{ "winners":[{ "winner-id":54, "numbers":[52,3,12,11,18,22] }] } }""") scala> val mergedLotto = lotto1 merge lotto2 scala> pretty(render(mergedLotto)) res0: String = { "lotto":{ "lotto-id":5, "winning-numbers":[2,45,34,23,7,5,3], "winners":[{ "winner-id":23, "numbers":[2,45,34,23,3,5] },{ "winner-id":54, "numbers":[52,3,12,11,18,22] }] } }
3) 兩個json 串查找差別
scala> val Diff(changed, added, deleted) = mergedLotto diff lotto1 changed: org.json4s.JsonAST.JValue = JNothing added: org.json4s.JsonAST.JValue = JNothing deleted: org.json4s.JsonAST.JValue = JObject(List((lotto,JObject(List(JField(winners, JArray(List(JObject(List((winner-id,JInt(54)), (numbers,JArray( List(JInt(52), JInt(3), JInt(12), JInt(11), JInt(18), JInt(22))))))))))))))
> 參考連接:https://blog.csdn.net/leehbing/article/details/74391308