形如\(a_{n+1}=p\cdot a_n+q\),\(p,q\)爲常數,即\(a_{n+1}=f(a_n)\),構造變形方向:函數
其一:\(a_{n+1}+k=p(a_n+k)\),構造\(\{a_n+k\}\)爲等比數列,\(k=\frac{q}{p-1}\);spa
其二:先獲得\(a_n=p\cdot a_{n-1}+q\),兩式作差,獲得class
\(a_{n+1}-a_n=p(a_n-a_{n-1})\),構造\(\{a_n-a_{n-1}\}\)爲等比數列;co
形如\(a_{n+1}=2\cdot a_n+3n+2\),即\(a_{n+1}=f(n,a_n)\),構造變形方向:math
假設\(a_{n+1}+A(n+1)+B=2(a_n+An+B)\),解得\(A=3\),\(B=5\),
即\(a_{n+1}+3(n+1)+5=2(a_n+3n+5)\),構造\(\{a_n+3n+5\}\)爲等比數列;
形如\(a_{n+1}=2\cdot a_n+3n^2+4n+2\),即\(a_{n+1}=f(n,a_n)\),(高三僅僅瞭解)構造變形方向:
假設\(a_{n+1}+A(n+1)^2+B(n+1)+C=2(a_n+An^2+Bn+C)\),解得\(A=3\),\(B=10\),\(C=15\)
即\(a_{n+1}+3(n+1)^2+10(n+1)+15=2(a_n+3n^2+10n+15)\),構造\(\{a_n+3n^2+10n+15\}\)爲等比數列;
形如\(a_{n+2}=3 a_{n+1}-2a_n\),即\(a_{n+2}=f(a_{n+1},a_n)\),一次式,構造變形方向:
假設\(a_{n+2}+pa_{n+1}=k(a_{n+1}+pa_n)\),解得\(\left\{\begin{array}{l}{k=2}\\{p=-1}\end{array}\right.\),\(\left\{\begin{array}{l}{k=1}\\{p=-2}\end{array}\right.\),
當 \(\left\{\begin{array}{l}{k=2}\\{p=-1}\end{array}\right.\)時,即\(a_{n+2}-a_{n+1}=2(a_{n+1}-a_n)\),構造\(\{a_{n+1}-a_n\}\)爲等比數列;
當\(\left\{\begin{array}{l}{k=1}\\{p=-2}\end{array}\right.\)時,即\(a_{n+2}-2a_{n+1}=a_{n+1}-2a_n\),構造\(\{a_{n+1}-2a_n\}\)爲等差數列;
形如\(a_{n+1}=\cfrac{a_n}{na_n+1}\),或\(a_{n+1}=f(a_n)\),分式函數,構造變形方向:
兩邊同時取倒數,獲得\(\cfrac{1}{a_{n+1}}=\cfrac{1}{a_n}+n\),即\(b_{n+1}-b_n=f(n)\)型,累加法
形如\(a_{n+1}=2\cdot a_n+3^n\),或\(a_{n+1}=f(n,a_n)\),並不是關於\(n\)的多項式函數,構造變形方向:
兩邊同時除以\(3^{n+1}\),則獲得\(\cfrac{a_{n+1}}{3^{n+1}}=\cfrac{2}{3}\cdot \cfrac{a_n}{3^n}+\cfrac{1}{3}\),即\(b_{n+1}=pb_n+q\)型,
再如\(a_{n+1}=\cfrac{1}{2}a_n+\cfrac{1}{2^{n-1}}\),兩邊同乘以\(2^{n+1}\),
獲得\(2^{n+1}\cdot a_{n+1}=2^n\cdot a_n+4\),即轉化爲\(b_{n+1}-b_n=d\)型;
形如\(S_{n+1}-S_n = k\cdot S_{n+1}\cdot S_n\),(\(k\)爲常數),構造變形方向:
等式兩邊同除以非零因子\(S_{n+1}\cdot S_n\),獲得\(\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}}=k\),構造\(\{\cfrac{1}{S_n}\}\)爲等差數列。
一樣的變形,形如\(a_{n+1}-a_n = k\cdot a_{n+1}\cdot a_n\),(\(k\)爲常數),
形如如\(a_{n+1}=p\cdot a_n^m\),(\(p,m\)爲常數),構造變形方向:
兩邊取經常使用對數,獲得\(lga_{n+1}=lgp+mlga_n\),即\(b_{n+1}=pb_n+q\)型,
獲得\(a_{n+2}\cdot a_{n+1}=2^{n+1}\),作商獲得\(\cfrac{a_{n+2}}{a_n}=2\),即全部的奇數項和偶數項各自成等比數列。
獲得\(a_{n+2}+a_{n+1}=2(n+1)\),作差獲得\(a_{n+2}-a_n=2\),即全部的奇數項和偶數項各自成等差數列。
形如\(a_{n+m}=a_n+a_m\),構造變形方向:
賦值\(m=1\),獲得\(a_{n+1}- a_n=a_1\),即獲得等差數列。
形如\(a_{n+m}=a_n\cdot a_m\),構造變形方向:
賦值\(m=1\),獲得\(a_{n+1}= a_n\cdot a_1\),即獲得等比數列。