LinkedList
and ArrayList
are two different implementations of the List interface. LinkedList
implements it with a doubly-linked list. ArrayList
implements it with a dynamically re-sizing array.html
As with standard linked list and array operations, the various methods will have different algorithmic runtimes.java
For LinkedList<E>
api
get(int index)
is O(n/4) averageadd(E element)
is O(1)add(int index, E element)
is O(n/4) averageindex = 0
<--- main benefit of LinkedList<E>
remove(int index)
is O(n/4) averageIterator.remove()
is O(1) <--- main benefit of LinkedList<E>
ListIterator.add(E element)
is O(1) <--- main benefit of LinkedList<E>
Note: O(n/4) is average, O(1) best case (e.g. index = 0), O(n/2) worst case (middle of list)oracle
For ArrayList<E>
less
get(int index)
is O(1) <--- main benefit of ArrayList<E>
add(E element)
is O(1) amortized, but O(n) worst-case since the array must be resized and copiedadd(int index, E element)
is O(n/2) averageremove(int index)
is O(n/2) averageIterator.remove()
is O(n/2) averageListIterator.add(E element)
is O(n/2) averageNote: O(n/2) is average, O(1) best case (end of list), O(n) worst case (start of list)dom
LinkedList<E>
allows for constant-time insertions or removals using iterators, but only sequential access of elements. In other words, you can walk the list forwards or backwards, but finding a position in the list takes time proportional to the size of the list. Javadoc says "operations that index into the list will traverse the list from the beginning or the end, whichever is closer", so those methods are O(n/4) on average, though O(1) for index = 0
.ide
ArrayList<E>
, on the other hand, allow fast random read access, so you can grab any element in constant time. But adding or removing from anywhere but the end requires shifting all the latter elements over, either to make an opening or fill the gap. Also, if you add more elements than the capacity of the underlying array, a new array (1.5 times the size) is allocated, and the old array is copied to the new one, so adding to an ArrayList
is O(n) in the worst case but constant on average.ui
So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an ArrayList
is technically faster, but unless you're doing something really performance-sensitive, you shouldn't worry about this -- they're both constants.)this
The main benefits of using a LinkedList
arise when you re-use existing iterators to insert and remove elements. These operations can then be done in O(1) by changing the list locally only. In an array list, the remainder of the array needs to be moved (i.e. copied). On the other side, seeking in a LinkedList
means following the links in O(n), whereas in an ArrayList
the desired position can be computed mathematically and accessed in O(1).code
Another benefit of using a LinkedList
arise when you add or remove from the head of the list, since those operations are O(1), while they are O(n) for ArrayList
. Note that ArrayDeque
may be a good alternative to LinkedList
for adding and removing from the head, but it is not a List
.
Also, if you have large lists, keep in mind that memory usage is also different. Each element of a LinkedList
has more overhead since pointers to the next and previous elements are also stored. ArrayLists
don't have this overhead. However, ArrayLists
take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.
The default initial capacity of an ArrayList
is pretty small (10 from Java 1.4 - 1.8). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you're going to add a lot of elements, construct the ArrayList
with a higher initial capacity.
It's worth noting that Vector also implements the List interface and is almost identical toArrayList
. The difference is that Vector is synchronized, so it is thread-safe. Because of this, it is also slightly slower than ArrayList
. So as far as I understand, most Java programmers avoid Vector in favor of ArrayList
since they will probably synchronize explicitly anyway if they care about that.