數據結構的擴張

一.擴張數據結構數據結構

1.目的:給基本數據結構進行擴張以支持一些附加功能或者利用附加信息加速已有的操做ide

2.基本步驟(能夠用於檢查和糾錯)spa

(1)選擇一種基礎的數據結構(紅黑樹,樹,鏈表,隊列等)設計

(2)肯定基礎數據結構中要維護的附加信息(具體數據,或屬性,或指針類信息等)指針

(3)檢驗基礎數據結構上的基本修改操做是否能維護附加信息(保證數據結構的運行效率)code

(4)設計一些新的操做blog

 

二.動態順序統計隊列

1.順序統計樹:在每一個結點上存儲附加信息(以x爲根的子樹(包括x自己)的節點數size)的一棵紅黑樹it

2.一個元素的秩爲在中序遍歷樹時輸出的位置event

3.分析

(1)選擇基礎數據結構--紅黑樹

(2)添加節點附加信息--size

(3)保證刪除,插入等操做都能在O(lg n)時間內維護size屬性

(4)設計新的操做-select和rank

 查找具備給定秩的元素,

  1 class Node:
  2     def __init__(self, key, right, left, p, color, size):
  3         self.key = key
  4         self.right = right
  5         self.left = left
  6         self.p = p
  7         self.color = color
  8         self.size = size
  9 
 10 
 11 class tree:
 12     def __init__(self, root, nil):
 13         self.root = root
 14         self.nil = nil
 15 
 16     def tree_insert(self, z):
 17         y = self.nil
 18         x = self.root
 19         while x != self.nil:
 20             y = x
 21             if z.key < x.key:
 22                 x = x.left
 23             else:
 24                 x = x.right
 25         z.p = y
 26         if y == self.nil:
 27             self.root = z
 28         elif z.key < y.key:
 29             y.left = z
 30         else:
 31             y.right = z
 32         z.left = self.nil
 33         z.right = self.nil
 34         z.color = "RED"
 35         # z插入成功後,size初始化爲1
 36         z.size = 1
 37         # 紅黑樹性質維護
 38         self.rb_insert_fixup(z)
 39         # 更新結點z的父結點直到根結點的size屬性
 40         while z.p != self.nil:
 41             z.p.size += 1
 42             z = z.p
 43 
 44     def left_rotate(self, x):
 45         y = x.right
 46         x.right = y.left
 47         if y.left != self.nil:
 48             y.left.p = x
 49         y.p = x.p
 50         if x.p == self.nil:
 51             self.root = y
 52         elif x == x.p.left:
 53             x.p.left = y
 54         else:
 55             x.p.right = y
 56         y.left = x
 57         x.p = y
 58         # 左旋致使兩個結點的size屬性失效,size屬性更新以下:
 59         y.size = x.size
 60         x.size = x.left.size + x.right.size + 1
 61 
 62     def right_rotate(self, y):
 63         x = y.left
 64         y.left = x.right
 65         if x.right != self.nil:
 66             x.right.p = y
 67         x.p = y.p
 68         if y.p == self.nil:
 69             self.root = x
 70         elif y == y.p.left:
 71             y.p.left = x
 72         else:
 73             y.p.right = x
 74         x.right = y
 75         y.p = x
 76         # 右旋致使兩個結點的size屬性失效,size屬性更新以下:
 77         x.size = y.size
 78         y.size = y.right.size + y.left.size + 1
 79 
 80     def rb_insert_fixup(self, z):
 81         while z.p.color == "RED":
 82             if z.p == z.p.p.left:
 83                 y = z.p.p.right
 84                 if y.color == "RED":
 85                     z.p.color = "BLACK"
 86                     y.color = "BLACK"
 87                     z.p.p.color = "RED"
 88                     z = z.p.p
 89                 else:
 90                     if z == z.p.right:
 91                         z = z.p
 92                         self.left_rotate(z)
 93                     z.p.color = "BLACK"
 94                     z.p.p.color = "RED"
 95                     self.right_rotate(z.p.p)
 96             else:
 97                 y = z.p.p.left
 98                 if y.color == "RED":
 99                     z.p.color = "BLACK"
100                     y.color = "BLACK"
101                     z.p.p.color = "RED"
102                     z = z.p.p
103                 else:
104                     if z == z.p.left:
105                         z = z.p
106                         self.right_rotate(z)
107                     z.p.color = "BLACK"
108                     z.p.p.color = "RED"
109                     self.left_rotate(z.p.p)
110         self.root.color = "BLACK"
111 
112     def inorder_tree_walk(self, x):
113         if x != self.nil:
114             self.inorder_tree_walk(x.left)
115             print(x.key)
116             self.inorder_tree_walk(x.right)
117 
118     def tree_search(self, x, k):
119         if x == self.nil or k == x.key:
120             return x
121         if k < x.key:
122             return self.tree_search(x.left, k)
123         else:
124             return self.tree_search(x.right, k)
125 
126     def rb_transplant(self, u, v):
127         if u.p == self.nil:
128             self.root = v
129         elif u == u.p.left:
130             u.p.left = v
131         else:
132             u.p.right = v
133         v.p = u.p
134 
135     def tree_minimum(self, x):
136         while x.left != self.nil:
137             x = x.left
138         return x
139 
140     def rb_delete(self, z):
141         y = z
142         y_original_color = y.color
143         if z.left == self.nil:
144             x = z.right
145             self.rb_transplant(z, z.right)
146         elif z.right == self.nil:
147             x = z.left
148             self.rb_transplant(z, z.left)
149         else:
150             y = self.tree_minimum(z.right)
151             y_original_color = y.color
152             x = y.right
153             if y.p == z:
154                 x.p = y
155             else:
156                 self.rb_transplant(y, y.right)
157                 y.right = z.right
158                 y.right.p = y
159             self.rb_transplant(z, y)
160             y.left = z.left
161             y.left.p = y
162             y.color = z.color
163             if y_original_color == "BLACK":
164                 self.rb_delete_fixup(x)
165 
166     def rb_delete_fixup(self, x):
167         while x != self.root and x.color == "BLACK":
168             if x == x.p.left:
169                 w = x.p.right
170                 if w.color == "RED":
171                     w.color = "BLACK"
172                     x.p.color = "RED"
173                     self.left_rotate(x.p)
174                     w = x.p.right
175                 if w.left.color == "BLACK" and w.right.color == "BLACK":
176                     w.color = "RED"
177                     x = x.p
178                 else:
179                     if w.right.color == "BLACK":
180                         w.left.color == "BLACK"
181                         w.color = "RED"
182                         self.right_rotate(w)
183                         w = x.p.right
184                     w.color = x.p.color
185                     x.p.color = "BLACK"
186                     w.right.color = "BLACK"
187                     self.left_rotate(x.p)
188                     x = self.root
189             else:
190                 w = x.p.left
191                 if w.color == "RED":
192                     w.color = "BLACK"
193                     x.p.color = "RED"
194                     self.right_rotate(x.p)
195                     w = x.p.left
196                 if w.right.color == "BLACK" and w.left.color == "BLACK":
197                     w.color = "RED"
198                     x = x.p
199                 else:
200                     if w.left.color == "BLACK":
201                         w.right.color == "BLACK"
202                         w.color = "RED"
203                         self.left_rotate(w)
204                         w = x.p.left
205                     w.color = x.p.color
206                     x.p.color = "BLACK"
207                     w.left.color = "BLACK"
208                     self.right_rotate(x.p)
209                     x = self.root
210         x.color = "BLACK"
211 
212     def print_tree(self, z):
213         if z != self.nil:
214             print(z.key, z.color, ":", end='')
215             print("( ", end='')
216             print(z.left.key, z.left.color, "   ", end='')
217             print(z.right.key, z.right.color, end='')
218             print(" )", end='')
219 
220     # 找出統計樹中的第i小的關鍵字
221     def os_select(self, x, i):
222         r = x.left.size + 1
223         if i == r:
224             return x
225         elif x < r:
226             return self.os_select(x.left, i)
227         else:
228             # 注意這種狀況就應該找以x爲根結點的右子樹中第i-r小的關鍵字了。
229             return self.os_select(x.right, i - r)
230 
231     # 肯定一個元素的秩:返回對T中序遍歷對應的線性序中x的位置
232     def os_rank(self, x):
233         r = x.left.size + 1
234         y = x
235         while y != self.root:
236             if y == y.p.right:
237                 r += y.p.left.size + 1
238             y = y.p
239         return r
動態順序統計

 

 

三.區間樹

1.區間樹是對動態集合進行維護的紅黑樹,其中每一個元素x都包含一個區間x.int

fe

2.分析:

(1)選擇基礎數據結構--紅黑樹

(2)添加節點附加信息--以x爲根的子樹中全部區間的端點的最大值x.max

(3)對信息的維護--插入和刪除操做可否在O(lgn)時間內完成

(4)設計新的操做-insert,delete,search

  1 class Node:
  2     def __init__(self,right,left,p,color,inter,maxx):
  3         self.key=inter.low
  4         self.right=right
  5         self.left=left
  6         self.p=p
  7         self.color=color
  8         #新增區間屬性
  9         self.inter=inter
 10         #新增附加信息maxx
 11         self.maxx=maxx
 12  
 13 #表明區間的類
 14 class Inter:
 15     def __init__(self,low,high):
 16         self.low=low
 17         self.high=high
 18  
 19 class tree:
 20     def __init__(self,root,nil):
 21         self.root=root
 22         self.nil=nil
 23     def tree_insert(self,z):
 24         y=self.nil
 25         x=self.root
 26         while x!=self.nil:
 27             y=x
 28             if z.key<x.key:
 29                 x=x.left
 30             else:
 31                 x=x.right
 32         z.p=y
 33         if y==self.nil:
 34             self.root=z
 35         elif z.key<y.key:
 36             y.left=z
 37         else:
 38             y.right=z
 39         z.left=self.nil
 40         z.right=self.nil
 41         z.color="RED"
 42         z.maxx=max(z.inter.high,z.left.maxx,z.right.maxx)
 43         #紅黑樹性質維護
 44         self.rb_insert_fixup(z)
 45         #更新父結點直到根結點的maxx
 46         while z.p!=self.nil:
 47             z.p.maxx=max(z.p.maxx,z.maxx)
 48             z=z.p
 49             
 50     def left_rotate(self,x):
 51         y=x.right
 52         x.right=y.left
 53         if y.left!=self.nil:
 54             y.left.p=x
 55         y.p=x.p
 56         if x.p==self.nil:
 57             self.root=y
 58         elif x==x.p.left:
 59             x.p.left=y
 60         else:
 61             x.p.right=y
 62         y.left=x
 63         x.p=y
 64         #左旋致使兩個結點的max屬性改變,更新以下
 65         y.maxx=x.maxx
 66         x.maxx=max(x.left.maxx,x.right.maxx,x.inter.high)
 67         
 68  
 69     def right_rotate(self,y):
 70         x=y.left
 71         y.left=x.right
 72         if x.right!=self.nil:
 73             x.right.p=y
 74         x.p=y.p  
 75         if y.p==self.nil:
 76             self.root=x
 77         elif y==y.p.left:
 78             y.p.left=x
 79         else:
 80             y.p.right=x
 81         x.right=y
 82         y.p=x
 83         #右旋致使兩個結點的max屬性改變,更新以下
 84         x.maxx=y.maxx
 85         y.maxx=max(y.right.maxx,y.left.maxx,y.inter.high)
 86  
 87     def rb_insert_fixup(self,z):
 88         while z.p.color=="RED":
 89             if z.p==z.p.p.left:
 90                 y=z.p.p.right
 91                 if y.color=="RED":
 92                     z.p.color="BLACK"
 93                     y.color="BLACK"
 94                     z.p.p.color="RED"
 95                     z=z.p.p
 96                 else:
 97                     if z==z.p.right:
 98                         z=z.p
 99                         self.left_rotate(z)
100                     z.p.color="BLACK"
101                     z.p.p.color="RED"
102                     self.right_rotate(z.p.p)
103             else:
104                 y=z.p.p.left
105                 if y.color=="RED":
106                     z.p.color="BLACK"
107                     y.color="BLACK"
108                     z.p.p.color="RED"
109                     z=z.p.p
110                 else:
111                     if z==z.p.left:
112                         z=z.p
113                         self.right_rotate(z)
114                     z.p.color="BLACK"
115                     z.p.p.color="RED"
116                     self.left_rotate(z.p.p)
117         self.root.color="BLACK"
118     def inorder_tree_walk(self,x):
119         if x!=self.nil:
120             self.inorder_tree_walk(x.left)
121             print(x.key)
122             self.inorder_tree_walk(x.right)
123     def tree_search(self,x,k):
124         if x==self.nil or k==x.key:
125             return x
126         if k < x.key:
127             return self.tree_search(x.left,k)
128         else: return self.tree_search(x.right,k)
129  
130     def rb_transplant(self,u,v):
131         if u.p==self.nil:
132             self.root=v
133         elif u==u.p.left:
134             u.p.left=v
135         else:
136             u.p.right=v
137         v.p=u.p
138     def tree_minimum(self,x):
139         while x.left!=self.nil:
140             x=x.left
141         return x
142  
143     
144     def rb_delete(self,z):
145         y=z
146         y_original_color=y.color
147         if z.left==self.nil:
148             x=z.right
149             self.rb_transplant(z,z.right)
150         elif z.right==self.nil:
151             x=z.left
152             self.rb_transplant(z,z.left)
153         else:
154             y=self.tree_minimum(z.right)
155             y_original_color=y.color
156             x=y.right
157             if y.p==z:
158                 x.p=y
159             else:
160                 self.rb_transplant(y,y.right)
161                 y.right=z.right
162                 y.right.p=y
163             self.rb_transplant(z,y)
164             y.left=z.left
165             y.left.p=y
166             y.color=z.color
167             if y_original_color=="BLACK":
168                 self.rb_delete_fixup(x)       
169             
170  
171     def rb_delete_fixup(self,x):
172         while x!=self.root and x.color=="BLACK":
173             if x==x.p.left:
174                 w=x.p.right
175                 if w.color=="RED":
176                     w.color="BLACK"
177                     x.p.color="RED"
178                     self.left_rotate(x.p)
179                     w=x.p.right
180                 if w.left.color=="BLACK" and w.right.color=="BLACK":
181                     w.color="RED"
182                     x=x.p
183                 else:
184                     if w.right.color=="BLACK":
185                         w.left.color=="BLACK"
186                         w.color="RED"
187                         self.right_rotate(w)
188                         w=x.p.right
189                     w.color=x.p.color
190                     x.p.color="BLACK"
191                     w.right.color="BLACK"
192                     self.left_rotate(x.p)
193                     x=self.root
194             else:
195                 w=x.p.left
196                 if w.color=="RED":
197                     w.color="BLACK"
198                     x.p.color="RED"
199                     self.right_rotate(x.p)
200                     w=x.p.left
201                 if w.right.color=="BLACK" and w.left.color=="BLACK":
202                     w.color="RED"
203                     x=x.p
204                 else:
205                     if w.left.color=="BLACK":
206                         w.right.color=="BLACK"
207                         w.color="RED"
208                         self.left_rotate(w)
209                         w=x.p.left
210                     w.color=x.p.color
211                     x.p.color="BLACK"
212                     w.left.color="BLACK"
213                     self.right_rotate(x.p)
214                     x=self.root
215         x.color="BLACK"
216  
217     def print_tree(self,z):
218         if z!=self.nil:
219             print(z.key,z.color,"[",z,inter.low,",",z.inter.high,"]",":",end='')
220             print("( ",end='')
221             print(z.left.key,z.left.color,"   ",end='')
222             print(z.right.key,z.right.color,end='')
223             print(" )",end='')
224     def interval_search(self,i):
225         x=self.root
226         while x!=self.nil and (i.high<x.inter.low or x.inter.high<i.low):
227             if x.left!=self.nil and x.left.maxx>=i.low:
228                 x=x.left
229             else:
230                 x=x.right
231         return x
232  
233 if __name__=="__main__":
234     inter=Inter(0,0)
235     nil=Node(None,None,None,"BLACK",inter,0)
236     inter=Inter(16,21)
237     root=Node(nil,nil,nil,"BLACK",inter,21)
238     t=tree(root,nil)
239     TT=[8,9,25,30,5,8,15,23,17,19,26,26,0,3,6,10,19,20]
240     for i in range(0,len(TT),2):
241         inter=Inter(TT[i],TT[i+1])
242         z=Node(nil,nil,nil,"RED",inter,0)
243         t.tree_insert(z)
區間樹
相關文章
相關標籤/搜索