一.擴張數據結構數據結構
1.目的:給基本數據結構進行擴張以支持一些附加功能或者利用附加信息加速已有的操做ide
2.基本步驟(能夠用於檢查和糾錯)spa
(1)選擇一種基礎的數據結構(紅黑樹,樹,鏈表,隊列等)設計
(2)肯定基礎數據結構中要維護的附加信息(具體數據,或屬性,或指針類信息等)指針
(3)檢驗基礎數據結構上的基本修改操做是否能維護附加信息(保證數據結構的運行效率)code
(4)設計一些新的操做blog
二.動態順序統計隊列
1.順序統計樹:在每一個結點上存儲附加信息(以x爲根的子樹(包括x自己)的節點數size)的一棵紅黑樹it
2.一個元素的秩爲在中序遍歷樹時輸出的位置event
3.分析
(1)選擇基礎數據結構--紅黑樹
(2)添加節點附加信息--size
(3)保證刪除,插入等操做都能在O(lg n)時間內維護size屬性
(4)設計新的操做-select和rank
查找具備給定秩的元素,
1 class Node: 2 def __init__(self, key, right, left, p, color, size): 3 self.key = key 4 self.right = right 5 self.left = left 6 self.p = p 7 self.color = color 8 self.size = size 9 10 11 class tree: 12 def __init__(self, root, nil): 13 self.root = root 14 self.nil = nil 15 16 def tree_insert(self, z): 17 y = self.nil 18 x = self.root 19 while x != self.nil: 20 y = x 21 if z.key < x.key: 22 x = x.left 23 else: 24 x = x.right 25 z.p = y 26 if y == self.nil: 27 self.root = z 28 elif z.key < y.key: 29 y.left = z 30 else: 31 y.right = z 32 z.left = self.nil 33 z.right = self.nil 34 z.color = "RED" 35 # z插入成功後,size初始化爲1 36 z.size = 1 37 # 紅黑樹性質維護 38 self.rb_insert_fixup(z) 39 # 更新結點z的父結點直到根結點的size屬性 40 while z.p != self.nil: 41 z.p.size += 1 42 z = z.p 43 44 def left_rotate(self, x): 45 y = x.right 46 x.right = y.left 47 if y.left != self.nil: 48 y.left.p = x 49 y.p = x.p 50 if x.p == self.nil: 51 self.root = y 52 elif x == x.p.left: 53 x.p.left = y 54 else: 55 x.p.right = y 56 y.left = x 57 x.p = y 58 # 左旋致使兩個結點的size屬性失效,size屬性更新以下: 59 y.size = x.size 60 x.size = x.left.size + x.right.size + 1 61 62 def right_rotate(self, y): 63 x = y.left 64 y.left = x.right 65 if x.right != self.nil: 66 x.right.p = y 67 x.p = y.p 68 if y.p == self.nil: 69 self.root = x 70 elif y == y.p.left: 71 y.p.left = x 72 else: 73 y.p.right = x 74 x.right = y 75 y.p = x 76 # 右旋致使兩個結點的size屬性失效,size屬性更新以下: 77 x.size = y.size 78 y.size = y.right.size + y.left.size + 1 79 80 def rb_insert_fixup(self, z): 81 while z.p.color == "RED": 82 if z.p == z.p.p.left: 83 y = z.p.p.right 84 if y.color == "RED": 85 z.p.color = "BLACK" 86 y.color = "BLACK" 87 z.p.p.color = "RED" 88 z = z.p.p 89 else: 90 if z == z.p.right: 91 z = z.p 92 self.left_rotate(z) 93 z.p.color = "BLACK" 94 z.p.p.color = "RED" 95 self.right_rotate(z.p.p) 96 else: 97 y = z.p.p.left 98 if y.color == "RED": 99 z.p.color = "BLACK" 100 y.color = "BLACK" 101 z.p.p.color = "RED" 102 z = z.p.p 103 else: 104 if z == z.p.left: 105 z = z.p 106 self.right_rotate(z) 107 z.p.color = "BLACK" 108 z.p.p.color = "RED" 109 self.left_rotate(z.p.p) 110 self.root.color = "BLACK" 111 112 def inorder_tree_walk(self, x): 113 if x != self.nil: 114 self.inorder_tree_walk(x.left) 115 print(x.key) 116 self.inorder_tree_walk(x.right) 117 118 def tree_search(self, x, k): 119 if x == self.nil or k == x.key: 120 return x 121 if k < x.key: 122 return self.tree_search(x.left, k) 123 else: 124 return self.tree_search(x.right, k) 125 126 def rb_transplant(self, u, v): 127 if u.p == self.nil: 128 self.root = v 129 elif u == u.p.left: 130 u.p.left = v 131 else: 132 u.p.right = v 133 v.p = u.p 134 135 def tree_minimum(self, x): 136 while x.left != self.nil: 137 x = x.left 138 return x 139 140 def rb_delete(self, z): 141 y = z 142 y_original_color = y.color 143 if z.left == self.nil: 144 x = z.right 145 self.rb_transplant(z, z.right) 146 elif z.right == self.nil: 147 x = z.left 148 self.rb_transplant(z, z.left) 149 else: 150 y = self.tree_minimum(z.right) 151 y_original_color = y.color 152 x = y.right 153 if y.p == z: 154 x.p = y 155 else: 156 self.rb_transplant(y, y.right) 157 y.right = z.right 158 y.right.p = y 159 self.rb_transplant(z, y) 160 y.left = z.left 161 y.left.p = y 162 y.color = z.color 163 if y_original_color == "BLACK": 164 self.rb_delete_fixup(x) 165 166 def rb_delete_fixup(self, x): 167 while x != self.root and x.color == "BLACK": 168 if x == x.p.left: 169 w = x.p.right 170 if w.color == "RED": 171 w.color = "BLACK" 172 x.p.color = "RED" 173 self.left_rotate(x.p) 174 w = x.p.right 175 if w.left.color == "BLACK" and w.right.color == "BLACK": 176 w.color = "RED" 177 x = x.p 178 else: 179 if w.right.color == "BLACK": 180 w.left.color == "BLACK" 181 w.color = "RED" 182 self.right_rotate(w) 183 w = x.p.right 184 w.color = x.p.color 185 x.p.color = "BLACK" 186 w.right.color = "BLACK" 187 self.left_rotate(x.p) 188 x = self.root 189 else: 190 w = x.p.left 191 if w.color == "RED": 192 w.color = "BLACK" 193 x.p.color = "RED" 194 self.right_rotate(x.p) 195 w = x.p.left 196 if w.right.color == "BLACK" and w.left.color == "BLACK": 197 w.color = "RED" 198 x = x.p 199 else: 200 if w.left.color == "BLACK": 201 w.right.color == "BLACK" 202 w.color = "RED" 203 self.left_rotate(w) 204 w = x.p.left 205 w.color = x.p.color 206 x.p.color = "BLACK" 207 w.left.color = "BLACK" 208 self.right_rotate(x.p) 209 x = self.root 210 x.color = "BLACK" 211 212 def print_tree(self, z): 213 if z != self.nil: 214 print(z.key, z.color, ":", end='') 215 print("( ", end='') 216 print(z.left.key, z.left.color, " ", end='') 217 print(z.right.key, z.right.color, end='') 218 print(" )", end='') 219 220 # 找出統計樹中的第i小的關鍵字 221 def os_select(self, x, i): 222 r = x.left.size + 1 223 if i == r: 224 return x 225 elif x < r: 226 return self.os_select(x.left, i) 227 else: 228 # 注意這種狀況就應該找以x爲根結點的右子樹中第i-r小的關鍵字了。 229 return self.os_select(x.right, i - r) 230 231 # 肯定一個元素的秩:返回對T中序遍歷對應的線性序中x的位置 232 def os_rank(self, x): 233 r = x.left.size + 1 234 y = x 235 while y != self.root: 236 if y == y.p.right: 237 r += y.p.left.size + 1 238 y = y.p 239 return r
三.區間樹
1.區間樹是對動態集合進行維護的紅黑樹,其中每一個元素x都包含一個區間x.int
fe
2.分析:
(1)選擇基礎數據結構--紅黑樹
(2)添加節點附加信息--以x爲根的子樹中全部區間的端點的最大值x.max
(3)對信息的維護--插入和刪除操做可否在O(lgn)時間內完成
(4)設計新的操做-insert,delete,search
1 class Node: 2 def __init__(self,right,left,p,color,inter,maxx): 3 self.key=inter.low 4 self.right=right 5 self.left=left 6 self.p=p 7 self.color=color 8 #新增區間屬性 9 self.inter=inter 10 #新增附加信息maxx 11 self.maxx=maxx 12 13 #表明區間的類 14 class Inter: 15 def __init__(self,low,high): 16 self.low=low 17 self.high=high 18 19 class tree: 20 def __init__(self,root,nil): 21 self.root=root 22 self.nil=nil 23 def tree_insert(self,z): 24 y=self.nil 25 x=self.root 26 while x!=self.nil: 27 y=x 28 if z.key<x.key: 29 x=x.left 30 else: 31 x=x.right 32 z.p=y 33 if y==self.nil: 34 self.root=z 35 elif z.key<y.key: 36 y.left=z 37 else: 38 y.right=z 39 z.left=self.nil 40 z.right=self.nil 41 z.color="RED" 42 z.maxx=max(z.inter.high,z.left.maxx,z.right.maxx) 43 #紅黑樹性質維護 44 self.rb_insert_fixup(z) 45 #更新父結點直到根結點的maxx 46 while z.p!=self.nil: 47 z.p.maxx=max(z.p.maxx,z.maxx) 48 z=z.p 49 50 def left_rotate(self,x): 51 y=x.right 52 x.right=y.left 53 if y.left!=self.nil: 54 y.left.p=x 55 y.p=x.p 56 if x.p==self.nil: 57 self.root=y 58 elif x==x.p.left: 59 x.p.left=y 60 else: 61 x.p.right=y 62 y.left=x 63 x.p=y 64 #左旋致使兩個結點的max屬性改變,更新以下 65 y.maxx=x.maxx 66 x.maxx=max(x.left.maxx,x.right.maxx,x.inter.high) 67 68 69 def right_rotate(self,y): 70 x=y.left 71 y.left=x.right 72 if x.right!=self.nil: 73 x.right.p=y 74 x.p=y.p 75 if y.p==self.nil: 76 self.root=x 77 elif y==y.p.left: 78 y.p.left=x 79 else: 80 y.p.right=x 81 x.right=y 82 y.p=x 83 #右旋致使兩個結點的max屬性改變,更新以下 84 x.maxx=y.maxx 85 y.maxx=max(y.right.maxx,y.left.maxx,y.inter.high) 86 87 def rb_insert_fixup(self,z): 88 while z.p.color=="RED": 89 if z.p==z.p.p.left: 90 y=z.p.p.right 91 if y.color=="RED": 92 z.p.color="BLACK" 93 y.color="BLACK" 94 z.p.p.color="RED" 95 z=z.p.p 96 else: 97 if z==z.p.right: 98 z=z.p 99 self.left_rotate(z) 100 z.p.color="BLACK" 101 z.p.p.color="RED" 102 self.right_rotate(z.p.p) 103 else: 104 y=z.p.p.left 105 if y.color=="RED": 106 z.p.color="BLACK" 107 y.color="BLACK" 108 z.p.p.color="RED" 109 z=z.p.p 110 else: 111 if z==z.p.left: 112 z=z.p 113 self.right_rotate(z) 114 z.p.color="BLACK" 115 z.p.p.color="RED" 116 self.left_rotate(z.p.p) 117 self.root.color="BLACK" 118 def inorder_tree_walk(self,x): 119 if x!=self.nil: 120 self.inorder_tree_walk(x.left) 121 print(x.key) 122 self.inorder_tree_walk(x.right) 123 def tree_search(self,x,k): 124 if x==self.nil or k==x.key: 125 return x 126 if k < x.key: 127 return self.tree_search(x.left,k) 128 else: return self.tree_search(x.right,k) 129 130 def rb_transplant(self,u,v): 131 if u.p==self.nil: 132 self.root=v 133 elif u==u.p.left: 134 u.p.left=v 135 else: 136 u.p.right=v 137 v.p=u.p 138 def tree_minimum(self,x): 139 while x.left!=self.nil: 140 x=x.left 141 return x 142 143 144 def rb_delete(self,z): 145 y=z 146 y_original_color=y.color 147 if z.left==self.nil: 148 x=z.right 149 self.rb_transplant(z,z.right) 150 elif z.right==self.nil: 151 x=z.left 152 self.rb_transplant(z,z.left) 153 else: 154 y=self.tree_minimum(z.right) 155 y_original_color=y.color 156 x=y.right 157 if y.p==z: 158 x.p=y 159 else: 160 self.rb_transplant(y,y.right) 161 y.right=z.right 162 y.right.p=y 163 self.rb_transplant(z,y) 164 y.left=z.left 165 y.left.p=y 166 y.color=z.color 167 if y_original_color=="BLACK": 168 self.rb_delete_fixup(x) 169 170 171 def rb_delete_fixup(self,x): 172 while x!=self.root and x.color=="BLACK": 173 if x==x.p.left: 174 w=x.p.right 175 if w.color=="RED": 176 w.color="BLACK" 177 x.p.color="RED" 178 self.left_rotate(x.p) 179 w=x.p.right 180 if w.left.color=="BLACK" and w.right.color=="BLACK": 181 w.color="RED" 182 x=x.p 183 else: 184 if w.right.color=="BLACK": 185 w.left.color=="BLACK" 186 w.color="RED" 187 self.right_rotate(w) 188 w=x.p.right 189 w.color=x.p.color 190 x.p.color="BLACK" 191 w.right.color="BLACK" 192 self.left_rotate(x.p) 193 x=self.root 194 else: 195 w=x.p.left 196 if w.color=="RED": 197 w.color="BLACK" 198 x.p.color="RED" 199 self.right_rotate(x.p) 200 w=x.p.left 201 if w.right.color=="BLACK" and w.left.color=="BLACK": 202 w.color="RED" 203 x=x.p 204 else: 205 if w.left.color=="BLACK": 206 w.right.color=="BLACK" 207 w.color="RED" 208 self.left_rotate(w) 209 w=x.p.left 210 w.color=x.p.color 211 x.p.color="BLACK" 212 w.left.color="BLACK" 213 self.right_rotate(x.p) 214 x=self.root 215 x.color="BLACK" 216 217 def print_tree(self,z): 218 if z!=self.nil: 219 print(z.key,z.color,"[",z,inter.low,",",z.inter.high,"]",":",end='') 220 print("( ",end='') 221 print(z.left.key,z.left.color," ",end='') 222 print(z.right.key,z.right.color,end='') 223 print(" )",end='') 224 def interval_search(self,i): 225 x=self.root 226 while x!=self.nil and (i.high<x.inter.low or x.inter.high<i.low): 227 if x.left!=self.nil and x.left.maxx>=i.low: 228 x=x.left 229 else: 230 x=x.right 231 return x 232 233 if __name__=="__main__": 234 inter=Inter(0,0) 235 nil=Node(None,None,None,"BLACK",inter,0) 236 inter=Inter(16,21) 237 root=Node(nil,nil,nil,"BLACK",inter,21) 238 t=tree(root,nil) 239 TT=[8,9,25,30,5,8,15,23,17,19,26,26,0,3,6,10,19,20] 240 for i in range(0,len(TT),2): 241 inter=Inter(TT[i],TT[i+1]) 242 z=Node(nil,nil,nil,"RED",inter,0) 243 t.tree_insert(z)