翻譯 | AI科技大本營(rgznai100)
算法
Hinton大神獨步天下的人工智能課程——多倫多大學「神經網絡與機器學習導論」,2017年課程表上線了。網絡
你可能沒學過這門課,但瞭解機器學習的你必定有聽過這門課的大名。今年冬季學期,這門課將交由多倫多大學助理教授Roger Grosse主講。架構
若是你還不知道這位教授,請必定要了解一下他在Google Brain實習的本科學生Aidan Gomez,AI100對此作過專門報道:牛!他本科沒畢業就進入Google Brain,還發表了最火的深度學習頂級論文... 你呢?機器學習
閒話少說,咱們直接來看 CSC321 "Intro to Neural Networks and Machine Learning" 的課程表:分佈式
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/函數
第1課:導論學習
什麼是機器學習,什麼是神經網絡,它們可以作什麼?優化
監督式學習、非監督式學習、以及強化學習呢?編碼
本課程的組織安排。人工智能
第2課:線性迴歸
線性迴歸,一種監督式學習模型,經過它你能夠預測獲得一個目標值。
以最優化問題的形式呈現它,而且經過直接求解方程或者梯度降低算法進行求解。
向量。特徵映射和多項式迴歸。泛化:過擬合、欠擬合、驗證。
第3課:線性分類
二元線性分類。線性分類器可視化。感知器算法。線性分類器的侷限性。
第4課:分類器學習
二元分類器損失函數比較。
交叉熵損失、Logistic激活函數、Logistic迴歸。
Hinge 損失。多向分類。凸損失函數。梯度檢驗。
第5課:多層感知機
多層感知機。激活函數比較。
把深度神經網絡視爲函數和特徵學習。
線性神經網絡的侷限性和非線性網絡的普適性。
第6課:反向傳播算法
反向傳播算法,一種用於計算梯度的方式,在整個課程中咱們都會用到它。
第7課:優化
如何使用反向傳播算法獲得的梯度。
損失函數特徵:局部最優解,鞍點,平頂,低谷。
隨機梯度降低算法和momentum算法。
第8課:自動微分法
由助理教授David Duvenaud授課
第9課:泛化
誤差/方差分解,數據加強,限制模型複雜度,提起結束,權重衰減,集成算法,隨機正則化,超參數優化。
第10課:分佈式表徵
語言模型,n-gram模型,神經網絡語言模型(一種分佈式表徵),skip-grams (另外一種分佈式表徵)
第11課:卷積神經網絡
卷積操做。卷積層和池化層。等變異數和不變性。
卷積神經網絡的反向傳播算法規則。
第12課:圖像分類
卷積神經網絡架構在手寫數字和物體分類方面的應用。
卷積神經網絡大小的測量。
第13課:玩轉卷積網絡
卷積神經網絡可視化:導向型反向傳播算法,輸入數據梯度降低。
Deep Dream。神經網絡風格遷移。
第14課:遞歸神經網絡
遞歸神經網絡。時間軸上的反向傳播。
遞歸神經網絡在語言模型和機器翻譯中的應用。
第15課:梯度爆炸和消失
爲何遞歸神經網絡梯度會爆炸或者消失,從兩個角度進行分析:第一,反向傳播機制;第二,遞歸神經網絡計算的函數。
對應的措施:梯度裁剪、輸入反轉、LSTM
第16課:ResNet與Attention
深度殘差網絡。
基於Attention模型在機器翻譯和字幕生成方面的應用。
神經網絡圖靈機。
第17課:學習機率模型
最大似然估計。貝葉斯參數估計基礎和最大化後驗估計。
第18課:混合模型
K-means。混合模型:後驗推斷和參數學習
第19課:玻爾茲曼機
玻爾茲曼機:定義;邊緣和條件機率;參數學習。受限玻爾茲曼機。
第20課:自編碼機
主成分分析;自編碼機;逐層訓練;將自編碼機應用於文件和圖像的獲取
第21課:貝葉斯超參數優化
貝葉斯線性迴歸;貝葉斯優化
第22課:對抗學習
對抗學習案例;生成式對抗網絡(GANs)
第23課:圍棋
「AlphaGo人機對戰」
怎麼樣,看到最後一節AlphaGo有沒有眼前一亮的感受?這就是緊跟技術發展的國外課程,跟國內不同的地方。
固然,若是你仍是懷念Hinton大神的親自講授,你老是能夠找到他的Coursera頁面:https://www.coursera.org/learn/neural-networks