資源 | 多倫多大學「神經網絡與機器學習導論」2017年課程表


翻譯 | AI科技大本營(rgznai100)
算法


Hinton大神獨步天下的人工智能課程——多倫多大學「神經網絡與機器學習導論」,2017年課程表上線了。網絡


你可能沒學過這門課,但瞭解機器學習的你必定有聽過這門課的大名。今年冬季學期,這門課將交由多倫多大學助理教授Roger Grosse主講。架構


若是你還不知道這位教授,請必定要了解一下他在Google Brain實習的本科學生Aidan Gomez,AI100對此作過專門報道:牛!他本科沒畢業就進入Google Brain,還發表了最火的深度學習頂級論文... 你呢?機器學習


閒話少說,咱們直接來看 CSC321 "Intro to Neural Networks and Machine Learning" 的課程表:分佈式


http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/函數


第1課:導論學習

  • 什麼是機器學習,什麼是神經網絡,它們可以作什麼?優化

  • 監督式學習、非監督式學習、以及強化學習呢?編碼

  • 本課程的組織安排。人工智能


第2課:線性迴歸

  • 線性迴歸,一種監督式學習模型,經過它你能夠預測獲得一個目標值。

  • 以最優化問題的形式呈現它,而且經過直接求解方程或者梯度降低算法進行求解。

  • 向量。特徵映射和多項式迴歸。泛化:過擬合、欠擬合、驗證。


第3課:線性分類

  • 二元線性分類。線性分類器可視化。感知器算法。線性分類器的侷限性。


第4課:分類器學習

  • 二元分類器損失函數比較。

  • 交叉熵損失、Logistic激活函數、Logistic迴歸。

  • Hinge 損失。多向分類。凸損失函數。梯度檢驗。


第5課:多層感知機

  • 多層感知機。激活函數比較。

  • 把深度神經網絡視爲函數和特徵學習。

  • 線性神經網絡的侷限性和非線性網絡的普適性。


第6課:反向傳播算法

  • 反向傳播算法,一種用於計算梯度的方式,在整個課程中咱們都會用到它。


第7課:優化

  • 如何使用反向傳播算法獲得的梯度。

  • 損失函數特徵:局部最優解,鞍點,平頂,低谷。

  • 隨機梯度降低算法和momentum算法。


第8課:自動微分法

  • 由助理教授David Duvenaud授課


第9課:泛化

  • 誤差/方差分解,數據加強,限制模型複雜度,提起結束,權重衰減,集成算法,隨機正則化,超參數優化。


第10課:分佈式表徵

  • 語言模型,n-gram模型,神經網絡語言模型(一種分佈式表徵),skip-grams (另外一種分佈式表徵)


第11課:卷積神經網絡

  • 卷積操做。卷積層和池化層。等變異數和不變性。

  • 卷積神經網絡的反向傳播算法規則。


第12課:圖像分類

  • 卷積神經網絡架構在手寫數字和物體分類方面的應用。

  • 卷積神經網絡大小的測量。


第13課:玩轉卷積網絡

  • 卷積神經網絡可視化:導向型反向傳播算法,輸入數據梯度降低。

  • Deep Dream。神經網絡風格遷移。


第14課:遞歸神經網絡

  • 遞歸神經網絡。時間軸上的反向傳播。

  • 遞歸神經網絡在語言模型和機器翻譯中的應用。


第15課:梯度爆炸和消失

  • 爲何遞歸神經網絡梯度會爆炸或者消失,從兩個角度進行分析:第一,反向傳播機制;第二,遞歸神經網絡計算的函數。

  • 對應的措施:梯度裁剪、輸入反轉、LSTM


第16課:ResNet與Attention

  • 深度殘差網絡。

  • 基於Attention模型在機器翻譯和字幕生成方面的應用。

  • 神經網絡圖靈機。


第17課:學習機率模型

  • 最大似然估計。貝葉斯參數估計基礎和最大化後驗估計。


第18課:混合模型

  • K-means。混合模型:後驗推斷和參數學習


第19課:玻爾茲曼機

  • 玻爾茲曼機:定義;邊緣和條件機率;參數學習。受限玻爾茲曼機。


第20課:自編碼機

  • 主成分分析;自編碼機;逐層訓練;將自編碼機應用於文件和圖像的獲取


第21課:貝葉斯超參數優化

  • 貝葉斯線性迴歸;貝葉斯優化


第22課:對抗學習

  • 對抗學習案例;生成式對抗網絡(GANs)


第23課:圍棋

  • 「AlphaGo人機對戰」


怎麼樣,看到最後一節AlphaGo有沒有眼前一亮的感受?這就是緊跟技術發展的國外課程,跟國內不同的地方。


固然,若是你仍是懷念Hinton大神的親自講授,你老是能夠找到他的Coursera頁面:https://www.coursera.org/learn/neural-networks

相關文章
相關標籤/搜索