【python / mxnet / gluoncv / jupyter notebook】基於mxnet和gluoncv的圖像分割

程序環境爲高性能集羣:javascript

CPU:Intel Xeon Gold 6140 Processor * 2(共36核心)
內存:512GB RAM
GPU:Tesla P100-PCIE-16GB * 2css

In [1]:
%matplotlib inline
 

3. Test with DeepLabV3 Pre-trained Models

This is a quick demo of using GluonCV DeepLabV3 model on ADE20K dataset. Please follow the installation guide <../index.html>_ to install MXNet and GluonCV if not yet.html

In [2]:
import mxnet as mx
from mxnet import image
from mxnet.gluon.data.vision import transforms
import gluoncv
# using cpu
ctx = mx.cpu(0)
 

Prepare the image

download the example imagehtml5

In [3]:
'''
url = 'https://github.com/zhanghang1989/image-data/blob/master/encoding/' + \
    'segmentation/ade20k/ADE_val_00001755.jpg?raw=true'
filename = 'ade20k_example.jpg'
gluoncv.utils.download(url, filename, True)
'''
filename = 'data/2/nju-cs.jpg'
 

load the imagejava

In [4]:
img = image.imread(filename)

from matplotlib import pyplot as plt
plt.imshow(img.asnumpy())
plt.show()
 
 

normalize the image using dataset meannode

In [5]:
from gluoncv.data.transforms.presets.segmentation import test_transform
img = test_transform(img, ctx)
 

Load the pre-trained model and make prediction

get pre-trained modelpython

In [6]:
model = gluoncv.model_zoo.get_model('deeplab_resnet101_ade', pretrained=True)
 

make prediction using single scalejquery

In [7]:
output = model.predict(img)
predict = mx.nd.squeeze(mx.nd.argmax(output, 1)).asnumpy()
 

Add color pallete for visualizationlinux

In [8]:
from gluoncv.utils.viz import get_color_pallete
import matplotlib.image as mpimg
mask = get_color_pallete(predict, 'ade20k')
mask.save('data/4/output-nju-cs.png')
 

show the predicted maskandroid

In [9]:
mmask = mpimg.imread('data/4/output-nju-cs.png')
plt.imshow(mmask)
plt.show()
 
 

More Examples

In [10]:
filename = 'data/2/1.jpg'
img = image.imread(filename)

plt.imshow(img.asnumpy())
plt.show()
img = test_transform(img, ctx)
model = gluoncv.model_zoo.get_model('deeplab_resnet101_ade', pretrained=True)

output = model.predict(img)
predict = mx.nd.squeeze(mx.nd.argmax(output, 1)).asnumpy()

mask = get_color_pallete(predict, 'ade20k')
mask.save('data/4/output1.png')
mmask = mpimg.imread('data/4/output1.png')
plt.imshow(mmask)
plt.show()
 
 
In [11]:
filename = 'data/2/3.jpg'
img = image.imread(filename)

plt.imshow(img.asnumpy())
plt.show()
img = test_transform(img, ctx)
model = gluoncv.model_zoo.get_model('deeplab_resnet101_ade', pretrained=True)

output = model.predict(img)
predict = mx.nd.squeeze(mx.nd.argmax(output, 1)).asnumpy()

mask = get_color_pallete(predict, 'ade20k')
mask.save('data/4/output3.png')
mmask = mpimg.imread('data/4/output3.png')
plt.imshow(mmask)
plt.show()
 
 
In [12]:
filename = 'data/2/train.jpg'
img = image.imread(filename)

plt.imshow(img.asnumpy())
plt.show()
img = test_transform(img, ctx)
model = gluoncv.model_zoo.get_model('deeplab_resnet101_ade', pretrained=True)

output = model.predict(img)
predict = mx.nd.squeeze(mx.nd.argmax(output, 1)).asnumpy()

mask = get_color_pallete(predict, 'ade20k')
mask.save('data/4/output-train.png')
mmask = mpimg.imread('data/4/output-train.png')
plt.imshow(mmask)
plt.show()
 
 
In [ ]:
 

 

tz@croplab,hzau

相關文章
相關標籤/搜索