基於Solr的HBase多條件查詢測試

轉自:http://www.cnblogs.com/chenz/articles/3229997.htmlhtml

背景:

某電信項目中採用HBase來存儲用戶終端明細數據,供前臺頁面即時查詢。HBase不容置疑擁有其優點,但其自己只對rowkey支持毫秒級的快速檢索,對於多字段的組合查詢卻無能爲力。針對HBase的多條件查詢也有多種方案,可是這些方案要麼太複雜,要麼效率過低,本文只對基於Solr的HBase多條件查詢方案進行測試和驗證。前端

原理:

基於Solr的HBase多條件查詢原理很簡單,將HBase表中涉及條件過濾的字段和rowkey在Solr中創建索引,經過Solr的多條件查詢快速得到符合過濾條件的rowkey值,拿到這些rowkey以後在HBASE中經過指定rowkey進行查詢。java

測試環境:

solr 4.0.0版本,使用其自帶的jetty服務端容器,單節點;web

hbase-0.94.2-cdh4.2.1,10臺Lunux服務器組成的HBase集羣。apache

HBase中2512萬條數據172個字段;瀏覽器

Solr索引HBase中的100萬條數據;緩存

測試結果:

一、100萬條數據在Solr中對8個字段創建索引。在Solr中最多8個過濾條件獲取51316條數據的rowkey值,基本在57-80毫秒。根據Solr返回的rowkey值在HBase表中獲取全部51316條數據12個字段值,耗時基本在15秒;服務器

二、數據量同上,過濾條件同上,採用Solr分頁查詢,每次獲取20條數據,Solr得到20個rowkey值耗時4-10毫秒,拿到Solr傳入的rowkey值在HBase中獲取對應20條12個字段的數據,耗時6毫秒。多線程

如下列出測試環境的搭建、以及相關代碼實現過程。

1、Solr環境的搭建

由於初衷只是測試Solr的使用,Solr的運行環境也只是用了其自帶的jetty,而非大多人用的Tomcat;沒有搭建Solr集羣,只是一個單一的Solr服務端,也沒有任何參數調優。併發

1)在Apache網站上下載Solr 4:http://lucene.apache.org/solr/downloads.html,咱們這裏下載的是「apache-solr-4.0.0.tgz」;

2)在當前目錄解壓Solr壓縮包:

cd /opt
tar -xvzf apache-solr-4.0.0.tgz

3)修改Solr的配置文件schema.xml,添加咱們須要索引的多個字段(配置文件位於「/opt/apache-solr-4.0.0/example/solr/collection1/conf/」)

   <field name="rowkey" type="string" indexed="true" stored="true" required="true" multiValued="false" /> 
   <field name="time" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="tebid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="tetid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="puid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="mgcvid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="mtcvid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="smaid" type="string" indexed="true" stored="true" required="false" multiValued="false" />
   <field name="mtlkid" type="string" indexed="true" stored="true" required="false" multiValued="false" />

另外關鍵的一點是修改原有的uniqueKey,本文設置HBase表的rowkey字段爲Solr索引的uniqueKey:

<uniqueKey>rowkey</uniqueKey>

type 參數表明索引數據類型,我這裏將type所有設置爲string是爲了不異常類型的數據致使索引創建失敗,正常狀況下應該根據實際字段類型設置,好比整型字段設置爲int,更加有利於索引的創建和檢索;

indexed 參數表明此字段是否創建索引,根據實際狀況設置,建議不參與條件過濾的字段一概設置爲false;

stored 參數表明是否存儲此字段的值,建議根據實際需求只將須要獲取值的字段設置爲true,以避免浪費存儲,好比咱們的場景只須要獲取rowkey,那麼只需把rowkey字段設置爲true便可,其餘字段所有設置flase;

required 參數表明此字段是否必需,若是數據源某個字段可能存在空值,那麼此屬性必需設置爲false,否則Solr會拋出異常;

multiValued 參數表明此字段是否容許有多個值,一般都設置爲false,根據實際需求可設置爲true。

4)咱們使用Solr自帶的example來做爲運行環境,定位到example目錄,啓動服務監聽:

cd /opt/apache-solr-4.0.0/example
java -jar ./start.jar

若是啓動成功,能夠經過瀏覽器打開此頁面:http://192.168.1.10:8983/solr/

2、讀取HBase源表的數據,在Solr中創建索引

一種方案是經過HBase的普通API獲取數據創建索引,此方案的缺點是效率較低每秒只能處理100多條數據(或許能夠經過多線程提升效率):

package com.ultrapower.hbase.solrhbase;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.solr.client.solrj.SolrServerException;
import org.apache.solr.client.solrj.impl.HttpSolrServer;
import org.apache.solr.common.SolrInputDocument;

public class SolrIndexer {

    /**
     * @param args
     * @throws IOException
     * @throws SolrServerException
     */
    public static void main(String[] args) throws IOException,
            SolrServerException {
        final Configuration conf;
        HttpSolrServer solrServer = new HttpSolrServer(
                "http://192.168.1.10:8983/solr"); // 由於服務端是用的Solr自帶的jetty容器,默認端口號是8983

        conf = HBaseConfiguration.create();
        HTable table = new HTable(conf, "hb_app_xxxxxx"); // 這裏指定HBase表名稱
        Scan scan = new Scan();
        scan.addFamily(Bytes.toBytes("d")); // 這裏指定HBase表的列族
        scan.setCaching(500);
        scan.setCacheBlocks(false);
        ResultScanner ss = table.getScanner(scan);

        System.out.println("start ...");
        int i = 0;
        try {
            for (Result r : ss) {
                SolrInputDocument solrDoc = new SolrInputDocument();
                solrDoc.addField("rowkey", new String(r.getRow()));
                for (KeyValue kv : r.raw()) {
                    String fieldName = new String(kv.getQualifier());
                    String fieldValue = new String(kv.getValue());
                    if (fieldName.equalsIgnoreCase("time")
                            || fieldName.equalsIgnoreCase("tebid")
                            || fieldName.equalsIgnoreCase("tetid")
                            || fieldName.equalsIgnoreCase("puid")
                            || fieldName.equalsIgnoreCase("mgcvid")
                            || fieldName.equalsIgnoreCase("mtcvid")
                            || fieldName.equalsIgnoreCase("smaid")
                            || fieldName.equalsIgnoreCase("mtlkid")) {
                        solrDoc.addField(fieldName, fieldValue);
                    }
                }
                solrServer.add(solrDoc);
                solrServer.commit(true, true, true);
                i = i + 1;
                System.out.println("已經成功處理 " + i + " 條數據");
            }
            ss.close();
            table.close();
            System.out.println("done !");
        } catch (IOException e) {
        } finally {
            ss.close();
            table.close();
            System.out.println("erro !");
        }
    }

}

另一種方案是用到HBase的Mapreduce框架,分佈式並行執行效率特別高,處理1000萬條數據僅需5分鐘,可是這種高併發須要對Solr服務器進行配置調優,否則會拋出服務器沒法響應的異常:

Error: org.apache.solr.common.SolrException: Server at http://192.168.1.10:8983/solr returned non ok status:503, message:Service Unavailable

MapReduce入口程序:

package com.ultrapower.hbase.solrhbase;

import java.io.IOException;
import java.net.URISyntaxException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;

public class SolrHBaseIndexer {
    private static void usage() {
        System.err.println("輸入參數: <配置文件路徑> <起始行> <結束行>");
        System.exit(1);
    }

    private static Configuration conf;

    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException, URISyntaxException {

        if (args.length == 0 || args.length > 3) {
            usage();
        }

        createHBaseConfiguration(args[0]);
        ConfigProperties tutorialProperties = new ConfigProperties(args[0]);
        String tbName = tutorialProperties.getHBTbName();
        String tbFamily = tutorialProperties.getHBFamily();

        Job job = new Job(conf, "SolrHBaseIndexer");
        job.setJarByClass(SolrHBaseIndexer.class);

        Scan scan = new Scan();
        if (args.length == 3) {
            scan.setStartRow(Bytes.toBytes(args[1]));
            scan.setStopRow(Bytes.toBytes(args[2]));
        }

        scan.addFamily(Bytes.toBytes(tbFamily));
        scan.setCaching(500); // 設置緩存數據量來提升效率
        scan.setCacheBlocks(false);

        // 建立Map任務
        TableMapReduceUtil.initTableMapperJob(tbName, scan,
                SolrHBaseIndexerMapper.class, null, null, job);

        // 不須要輸出
        job.setOutputFormatClass(NullOutputFormat.class);
        // job.setNumReduceTasks(0);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    /**
     * 從配置文件讀取並設置HBase配置信息
     * 
     * @param propsLocation
     * @return
     */
    private static void createHBaseConfiguration(String propsLocation) {
        ConfigProperties tutorialProperties = new ConfigProperties(
                propsLocation);
        conf = HBaseConfiguration.create();
        conf.set("hbase.zookeeper.quorum", tutorialProperties.getZKQuorum());
        conf.set("hbase.zookeeper.property.clientPort",
                tutorialProperties.getZKPort());
        conf.set("hbase.master", tutorialProperties.getHBMaster());
        conf.set("hbase.rootdir", tutorialProperties.getHBrootDir());
        conf.set("solr.server", tutorialProperties.getSolrServer());
    }
}

對應的Mapper:

package com.ultrapower.hbase.solrhbase;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.io.Text;
import org.apache.solr.client.solrj.SolrServerException;
import org.apache.solr.client.solrj.impl.HttpSolrServer;
import org.apache.solr.common.SolrInputDocument;

public class SolrHBaseIndexerMapper extends TableMapper<Text, Text> {

    public void map(ImmutableBytesWritable key, Result hbaseResult,
            Context context) throws InterruptedException, IOException {

        Configuration conf = context.getConfiguration();

        HttpSolrServer solrServer = new HttpSolrServer(conf.get("solr.server"));
        solrServer.setDefaultMaxConnectionsPerHost(100);
        solrServer.setMaxTotalConnections(1000);
        solrServer.setSoTimeout(20000);
        solrServer.setConnectionTimeout(20000);
        SolrInputDocument solrDoc = new SolrInputDocument();
        try {
            solrDoc.addField("rowkey", new String(hbaseResult.getRow()));
            for (KeyValue rowQualifierAndValue : hbaseResult.list()) {
                String fieldName = new String(
                        rowQualifierAndValue.getQualifier());
                String fieldValue = new String(rowQualifierAndValue.getValue());
                if (fieldName.equalsIgnoreCase("time")
                        || fieldName.equalsIgnoreCase("tebid")
                        || fieldName.equalsIgnoreCase("tetid")
                        || fieldName.equalsIgnoreCase("puid")
                        || fieldName.equalsIgnoreCase("mgcvid")
                        || fieldName.equalsIgnoreCase("mtcvid")
                        || fieldName.equalsIgnoreCase("smaid")
                        || fieldName.equalsIgnoreCase("mtlkid")) {
                    solrDoc.addField(fieldName, fieldValue);
                }
            }
            solrServer.add(solrDoc);
            solrServer.commit(true, true, true);
        } catch (SolrServerException e) {
            System.err.println("更新Solr索引異常:" + new String(hbaseResult.getRow()));
        }
    }
}

讀取參數配置文件的輔助類:

package com.ultrapower.hbase.solrhbase;

import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.Properties;

public class ConfigProperties {

    private static Properties props;
    private String HBASE_ZOOKEEPER_QUORUM;
    private String HBASE_ZOOKEEPER_PROPERTY_CLIENT_PORT;
    private String HBASE_MASTER;
    private String HBASE_ROOTDIR;
    private String DFS_NAME_DIR;
    private String DFS_DATA_DIR;
    private String FS_DEFAULT_NAME;
    private String SOLR_SERVER; // Solr服務器地址
    private String HBASE_TABLE_NAME; // 須要創建Solr索引的HBase表名稱
    private String HBASE_TABLE_FAMILY; // HBase表的列族

    public ConfigProperties(String propLocation) {
        props = new Properties();
        try {
            File file = new File(propLocation);
            System.out.println("從如下位置加載配置文件: " + file.getAbsolutePath());
            FileReader is = new FileReader(file);
            props.load(is);

            HBASE_ZOOKEEPER_QUORUM = props.getProperty("HBASE_ZOOKEEPER_QUORUM");
            HBASE_ZOOKEEPER_PROPERTY_CLIENT_PORT = props.getProperty("HBASE_ZOOKEEPER_PROPERTY_CLIENT_PORT");
            HBASE_MASTER = props.getProperty("HBASE_MASTER");
            HBASE_ROOTDIR = props.getProperty("HBASE_ROOTDIR");
            DFS_NAME_DIR = props.getProperty("DFS_NAME_DIR");
            DFS_DATA_DIR = props.getProperty("DFS_DATA_DIR");
            FS_DEFAULT_NAME = props.getProperty("FS_DEFAULT_NAME");
            SOLR_SERVER = props.getProperty("SOLR_SERVER");
            HBASE_TABLE_NAME = props.getProperty("HBASE_TABLE_NAME");
            HBASE_TABLE_FAMILY = props.getProperty("HBASE_TABLE_FAMILY");

        } catch (IOException e) {
            throw new RuntimeException("加載配置文件出錯");
        } catch (NullPointerException e) {
            throw new RuntimeException("文件不存在");
        }
    }

    public String getZKQuorum() {
        return HBASE_ZOOKEEPER_QUORUM;
    }

    public String getZKPort() {
        return HBASE_ZOOKEEPER_PROPERTY_CLIENT_PORT;
    }

    public String getHBMaster() {
        return HBASE_MASTER;
    }

    public String getHBrootDir() {
        return HBASE_ROOTDIR;
    }

    public String getDFSnameDir() {
        return DFS_NAME_DIR;
    }

    public String getDFSdataDir() {
        return DFS_DATA_DIR;
    }

    public String getFSdefaultName() {
        return FS_DEFAULT_NAME;
    }

    public String getSolrServer() {
        return SOLR_SERVER;
    }

    public String getHBTbName() {
        return HBASE_TABLE_NAME;
    }

    public String getHBFamily() {
        return HBASE_TABLE_FAMILY;
    }
}

參數配置文件「config.properties」:

HBASE_ZOOKEEPER_QUORUM=slave-1,slave-2,slave-3,slave-4,slave-5
HBASE_ZOOKEEPER_PROPERTY_CLIENT_PORT=2181
HBASE_MASTER=master-1:60000
HBASE_ROOTDIR=hdfs:///hbase
DFS_NAME_DIR=/opt/data/dfs/name
DFS_DATA_DIR=/opt/data/d0/dfs2/data
FS_DEFAULT_NAME=hdfs://192.168.1.10:9000
SOLR_SERVER=http://192.168.1.10:8983/solr
HBASE_TABLE_NAME=hb_app_m_user_te
HBASE_TABLE_FAMILY=d

3、結合Solr進行HBase數據的多條件查詢:

能夠經過web頁面操做Solr索引,

查詢:

http://192.168.1.10:8983/solr/select?(time:201307 AND tetid:1 AND mgcvid:101 AND smaid:101 AND puid:102)

刪除全部索引:

http://192.168.1.10:8983/solr/update/?stream.body=<delete><query>*:*</query></delete>&stream.contentType=text/xml;charset=utf-8&commit=true

經過java客戶端結合Solr查詢HBase數據:

package com.ultrapower.hbase.solrhbase;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.solr.client.solrj.SolrQuery;
import org.apache.solr.client.solrj.SolrServer;
import org.apache.solr.client.solrj.SolrServerException;
import org.apache.solr.client.solrj.impl.HttpSolrServer;
import org.apache.solr.client.solrj.response.QueryResponse;
import org.apache.solr.common.SolrDocument;
import org.apache.solr.common.SolrDocumentList;

public class QueryData {

    /**
     * @param args
     * @throws SolrServerException 
     * @throws IOException 
     */
    public static void main(String[] args) throws SolrServerException, IOException {
        final Configuration conf;
        conf = HBaseConfiguration.create();
        HTable table = new HTable(conf, "hb_app_m_user_te");
        Get get = null;
        List<Get> list = new ArrayList<Get>();
        
        String url = "http://192.168.1.10:8983/solr";
        SolrServer server = new HttpSolrServer(url);
        SolrQuery query = new SolrQuery("time:201307 AND tetid:1 AND mgcvid:101 AND smaid:101 AND puid:102");
        query.setStart(0); //數據起始行,分頁用
        query.setRows(10); //返回記錄數,分頁用
        QueryResponse response = server.query(query);
        SolrDocumentList docs = response.getResults();
        System.out.println("文檔個數:" + docs.getNumFound()); //數據總條數也可輕易獲取
        System.out.println("查詢時間:" + response.getQTime()); 
        for (SolrDocument doc : docs) {
            get = new Get(Bytes.toBytes((String) doc.getFieldValue("rowkey")));
            list.add(get);
        }
        
        Result[] res = table.get(list);
        
        byte[] bt1 = null;
        byte[] bt2 = null;
        byte[] bt3 = null;
        byte[] bt4 = null;
        String str1 = null;
        String str2 = null;
        String str3 = null;
        String str4 = null;
        for (Result rs : res) {
            bt1 = rs.getValue("d".getBytes(), "3mpon".getBytes());
            bt2 = rs.getValue("d".getBytes(), "3mponid".getBytes());
            bt3 = rs.getValue("d".getBytes(), "amarpu".getBytes());
            bt4 = rs.getValue("d".getBytes(), "amarpuid".getBytes());
            if (bt1 != null && bt1.length>0) {str1 = new String(bt1);} else {str1 = "無數據";} //對空值進行new String的話會拋出異常
            if (bt2 != null && bt2.length>0) {str2 = new String(bt2);} else {str2 = "無數據";}
            if (bt3 != null && bt3.length>0) {str3 = new String(bt3);} else {str3 = "無數據";}
            if (bt4 != null && bt4.length>0) {str4 = new String(bt4);} else {str4 = "無數據";}
            System.out.print(new String(rs.getRow()) + " ");
            System.out.print(str1 + "|");
            System.out.print(str2 + "|");
            System.out.print(str3 + "|");
            System.out.println(str4 + "|");
        }
        table.close();
    }
}

小結:

經過測試發現,結合Solr索引能夠很好的實現HBase的多條件查詢,同時還能解決其兩個難點:分頁查詢、數據總量統計。

實際場景中大多都是分頁查詢,分頁查詢返回的數據量不多,採用此種方案徹底能夠達到前端頁面毫秒級的實時響應;如有大批量的數據交互,好比涉及到數據導出,實際上效率也是很高,十萬數據僅耗時10秒。

另外,若是真的將Solr歸入使用,Solr以及HBase端均可以不斷進行優化,好比能夠搭建Solr集羣,甚至能夠採用SolrCloud基於hadoop的分佈式索引服務。

總之,HBase不能多條件過濾查詢的先天性缺陷,在Solr的配合之下能夠獲得較好的彌補,難怪諸如新蛋科技、國美電商、蘇寧電商等互聯網公司以及衆多遊戲公司,都使用Solr來支持快速查詢。

----end

本文鏈接:http://www.cnblogs.com/chenz/articles/3229997.html

做者:chenzheng

聯繫:vinkeychen@gmail.com

相關文章
相關標籤/搜索