OkHttp 源碼解析(三):鏈接池

簡介

上一篇文章(OkHttp 源碼解析(二):創建鏈接)分析了 OkHttp 創建鏈接的過程,主要涉及到的幾個類包括 StreamAllocationRealConnection 以及 HttpCodec,其中 RealConnection 封裝了底層的 Socket。Socket 創建了 TCP 鏈接,這是須要消耗時間和資源的,而 OkHttp 則使用鏈接池來管理這裏鏈接,進行鏈接的重用,提升請求的效率。OkHttp 中的鏈接池由 ConnectionPool 實現,本文主要是對這個類進行分析。java

get 和 put

StreamAllocationfindConnection 方法中,有這樣一段代碼:segmentfault

// Attempt to get a connection from the pool.
Internal.instance.get(connectionPool, address, this, null);
    if (connection != null) {
        return connection;
}

Internal.instance.get 最終是從 ConnectionPool 取得一個RealConnection, 若是有了則直接返回。下面是 ConnectionPool 中的代碼:app

@Nullable RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
    assert (Thread.holdsLock(this));
    for (RealConnection connection : connections) {
      if (connection.isEligible(address, route)) {
        streamAllocation.acquire(connection);
        return connection;
      }
    }
    return null;
}

connectionsConnectionPool 中的一個隊列:socket

private final Deque<RealConnection> connections = new ArrayDeque<>();

從隊列中取出一個 Connection 以後,判斷其是否能知足重用的要求:ide

public boolean isEligible(Address address, @Nullable Route route) {
    // If this connection is not accepting new streams, we're done.
    if (allocations.size() >= allocationLimit || noNewStreams) return false;

    // If the non-host fields of the address don't overlap, we're done.
    if (!Internal.instance.equalsNonHost(this.route.address(), address)) return false;

    // If the host exactly matches, we're done: this connection can carry the address.
    if (address.url().host().equals(this.route().address().url().host())) {
      return true; // This connection is a perfect match.
    }
   // 省略 http2 相關代碼
   ...
}

boolean equalsNonHost(Address that) {
    return this.dns.equals(that.dns)
        && this.proxyAuthenticator.equals(that.proxyAuthenticator)
        && this.protocols.equals(that.protocols)
        && this.connectionSpecs.equals(that.connectionSpecs)
        && this.proxySelector.equals(that.proxySelector)
        && equal(this.proxy, that.proxy)
        && equal(this.sslSocketFactory, that.sslSocketFactory)
        && equal(this.hostnameVerifier, that.hostnameVerifier)
        && equal(this.certificatePinner, that.certificatePinner)
        && this.url().port() == that.url().port();
}

若是這個 Connection 已經分配的數量超過了分配限制或者被標記爲不能再分配,則直接返回 false,不然調用 equalsNonHost,主要是判斷 Address 中除了 host 之外的變量是否相同,若是有不一樣的,那麼這個鏈接也不能重用。最後就是判斷 host 是否相同,若是相同那麼對於當前的 Address 來講, 這個 Connection 即是可重用的。從上面的代碼看來,get 邏輯仍是比較簡單明瞭的。ui

接下來看一下 put,在 StreamAllocationfindConnection 方法中,若是新建立了 Connection,則將其放到鏈接池中。this

Internal.instance.put(connectionPool, result);

最終調用的是 ConnectionPool#puturl

void put(RealConnection connection) {
    assert (Thread.holdsLock(this));
    if (!cleanupRunning) {
      cleanupRunning = true;
      executor.execute(cleanupRunnable);
    }
    connections.add(connection);
}

首先判斷其否啓動了清理線程,若是沒有則將 cleanupRunnable 放到線程池中。最後是將 RealConnection 放到隊列中。線程

cleanup

線程池須要對閒置的或者超時的鏈接進行清理,CleanupRunnable 就是作這件事的:code

private final Runnable cleanupRunnable = new Runnable() {
    @Override public void run() {
      while (true) {
        long waitNanos = cleanup(System.nanoTime());
        if (waitNanos == -1) return;
        if (waitNanos > 0) {
          long waitMillis = waitNanos / 1000000L;
          waitNanos -= (waitMillis * 1000000L);
          synchronized (ConnectionPool.this) {
            try {
              ConnectionPool.this.wait(waitMillis, (int) waitNanos);
            } catch (InterruptedException ignored) {
            }
          }
        }
      }
    }
};

run 裏面有個無限循環,調用 cleanup 以後,獲得一個時間 waitNano,若是不爲 -1 則表示線程的睡眠時間,接下來調用 wait 進入睡眠。若是是 -1,則表示當前沒有須要清理的鏈接,直接返回便可。

清理的主要實如今 cleanup 方法中,下面是其代碼:

long cleanup(long now) {
    int inUseConnectionCount = 0;
    int idleConnectionCount = 0;
    RealConnection longestIdleConnection = null;
    long longestIdleDurationNs = Long.MIN_VALUE;

    // Find either a connection to evict, or the time that the next eviction is due.
    synchronized (this) {
      for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
        RealConnection connection = i.next();

        // If the connection is in use, keep searching.
        // 1. 判斷是不是空閒鏈接
        if (pruneAndGetAllocationCount(connection, now) > 0) {
          inUseConnectionCount++;
          continue;
        }

        idleConnectionCount++;

        // If the connection is ready to be evicted, we're done.
        // 2. 判斷是不是最長空閒時間的鏈接
        long idleDurationNs = now - connection.idleAtNanos;
        if (idleDurationNs > longestIdleDurationNs) {
          longestIdleDurationNs = idleDurationNs;
          longestIdleConnection = connection;
        }
      }
        //  3. 若是最長空閒的時間超過了設定的最大值,或者空閒連接數量超過了最大數量,則進行清理,不然計算下一次須要清理的等待時間
      if (longestIdleDurationNs >= this.keepAliveDurationNs
          || idleConnectionCount > this.maxIdleConnections) {
        // We've found a connection to evict. Remove it from the list, then close it below (outside
        // of the synchronized block).
        connections.remove(longestIdleConnection);
      } else if (idleConnectionCount > 0) {
        // A connection will be ready to evict soon.
        return keepAliveDurationNs - longestIdleDurationNs;
      } else if (inUseConnectionCount > 0) {
        // All connections are in use. It'll be at least the keep alive duration 'til we run again.
        return keepAliveDurationNs;
      } else {
        // No connections, idle or in use.
        cleanupRunning = false;
        return -1;
      }
    }
     // 3. 關閉鏈接的socket
    closeQuietly(longestIdleConnection.socket());

    // Cleanup again immediately.
    return 0;
}

清理的邏輯大體是如下幾步:

  1. 遍歷全部的鏈接,對每一個鏈接調用 pruneAndGetAllocationCount 判斷其是否閒置的鏈接。若是是正在使用中,則直接遍歷一下個。
  2. 對於閒置的鏈接,判斷是不是當前空閒時間最長的。
  3. 對於當前空閒時間最長的鏈接,若是其超過了設定的最長空閒時間(5分鐘)或者是最大的空閒鏈接的數量(5個),則清理此鏈接。不然計算下次須要清理的時間,這樣 cleanupRunnable 中的循環變會睡眠相應的時間,醒來後繼續清理。

pruneAndGetAllocationCount 用於清理可能泄露的 StreamAllocation 並返回正在使用此鏈接的 StreamAllocation 的數量,代碼以下:

private int pruneAndGetAllocationCount(RealConnection connection, long now) {
    List<Reference<StreamAllocation>> references = connection.allocations;
    for (int i = 0; i < references.size(); ) {
      Reference<StreamAllocation> reference = references.get(i);

      if (reference.get() != null) {
        i++;
        continue;
      }

      // We've discovered a leaked allocation. This is an application bug.
      // 若是 StreamAlloction 引用被回收,可是 connection 的引用列表中扔持有,那麼可能發生了內存泄露
      StreamAllocation.StreamAllocationReference streamAllocRef =
          (StreamAllocation.StreamAllocationReference) reference;
      String message = "A connection to " + connection.route().address().url()
          + " was leaked. Did you forget to close a response body?";
      Platform.get().logCloseableLeak(message, streamAllocRef.callStackTrace);

      references.remove(i);
      connection.noNewStreams = true;

      // If this was the last allocation, the connection is eligible for immediate eviction.
      if (references.isEmpty()) {
        connection.idleAtNanos = now - keepAliveDurationNs;
        return 0;
      }
    }

    return references.size();
}

若是 StreamAllocation 已經被回收,說明應用層的代碼已經不須要這個鏈接,可是 Connection 仍持有 StreamAllocation 的引用,則表示StreamAllocationrelease(RealConnection connection) 方法未被調用,多是讀取 ResponseBody 沒有關閉 I/O 致使的。

總結

OkHttp 中的鏈接池主要就是保存一個正在使用的鏈接的隊列,對於知足條件的同一個 host 的多個鏈接複用同一個 RealConnection,提升請求效率。此外,還會啓動線程對閒置超時或者超出閒置數量的 RealConnection 進行清理。

若是個人文章對您有幫助,不妨點個贊支持一下(^_^)

相關文章
相關標籤/搜索