JAVA8學習——從源碼角度深刻Stream流(學習過程)

從源代碼深刻Stream /

學習的時候,官方文檔是最重要的.html

及其重要的內容咱們不只要知道stream用,要知道爲何這麼用,還要知道底層是怎麼去實現的.java

--我的註釋:今後看出,雖然新的jdk版本對開發人員提供了很大的遍歷,可是從底層角度來講,實現確實是很是複雜的.
--對外提供很簡單的接口使用. (必定是框架給封裝到底層了,因此你才用着簡單.)api

遇到問題,可以從底層深刻解決問題.數組

學習一門技術的時候,先學會用,而後去挖掘深層次的內容(底層代碼和運做方式).多線程

引入:Example.併發

public class StudentTest1 {
    public static void main(String[] args) {
        Student student1 = new Student("zhangsan", 80);
        Student student2 = new Student("lisi", 90);
        Student student3 = new Student("wangwu", 100);
        Student student4 = new Student("zhaoliu", 90);

        List<Student> students = Arrays.asList(student1, student2, student3, student4);

        //collect()方法深刻源碼詳解
        //op1:集合轉換爲stream, 而後stream轉換爲List
        List<Student> students1 = students.stream().collect(Collectors.toList());
        students1.forEach(System.out::println);

        System.out.println("----------");
        System.out.println("count: "+ students.stream().collect(counting()));//Collectors類提供的counting()方法
        System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底層實現 mapToLong()->sum

        //當jdk底層提供有通用的方法和具體的實現方法,越具體的越好.
    }
}

靜態導入(直接導入指定Java類中實現的方法)app

import static java.util.stream.Collectors.*;
  • collect:收集器
  • Collector是一個接口,是特別重要的接口.

Collector接口源碼解讀

題外話:雖然JDK提供了不少Collector的實現,可是不少人僅停留在使用階段.框架

咱們此次一行一行的讀javadoc. 由於真的很重要.ide

/**
 * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that
 * accumulates input elements into a mutable result container, optionally transforming
 * the accumulated result into a final representation after all input elements
 * have been processed.  Reduction operations can be performed either sequentially
 * or in parallel.
 一個可變的匯聚操做.將輸入元素累積到可變的結果容器當中.它會在全部元素都處理完畢後,將累積以後的結果轉換成一個最終的表示(這是一個可選操做).匯聚操做支持串行和並行兩種方式執行.
 
 --如 ArrayList:就是一個可變的容器.
 --支持並行操做:確保數據不會錯,線程能夠併發.很難.另外並非說並行必定比串行要快,由於並行是有額外開銷的.
 
 *
 * <p>Examples of mutable reduction operations include:
 * accumulating elements into a {@code Collection}; concatenating
 * strings using a {@code StringBuilder}; computing summary information about
 * elements such as sum, min, max, or average; computing "pivot table" summaries
 * such as "maximum valued transaction by seller", etc.  The class {@link Collectors}
 * provides implementations of many common mutable reductions.
 可變的reduction(匯聚)操做包括:將元素累積到集合當中,使用StringBuilder將字符串給拼在一塊兒,計算關於元素的sum,min,max or average等,計算數據透視圖計算:如根據銷售商獲取最大銷售額等.這個Collectors類,提供了大量的可變匯聚的實現.
 
 -- Collectors自己其實是一個工廠.
 
 *
 * <p>A {@code Collector} is specified by four functions that work together to
 * accumulate entries into a mutable result container, and optionally perform
 * a final transform on the result.  They are: <ul>
 *     <li>creation of a new result container ({@link #supplier()})</li>
 *     <li>incorporating a new data element into a result container ({@link #accumulator()})</li>
 *     <li>combining two result containers into one ({@link #combiner()})</li>
 *     <li>performing an optional final transform on the container ({@link #finisher()})</li>
 * </ul>
 一個Collector是由4個函數組成的,能夠對結果進行一個最終的轉化.
 4個方法分別是:
 1.建立一個新的接結果容器 <supplier()>  new  
 2.將新的數據元素給合併到一個結果容器中.<accumulator()>  add
 3.將兩個結果容器合併成一個.<combiner()>  + 
 4.將中間的累積類型,轉換成結果類型. <finisher()>  result
 每一個方法都會返回一個函數式皆苦.
 --學習的時候,官方文檔是最重要的.
 *
 * <p>Collectors also have a set of characteristics, such as
 * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a
 * reduction implementation to provide better performance.
 Collectors 還會返回這麼一個集合 Characteristics#CONCURRENT. (也就是這個類中的枚舉類)
 
 *
 * <p>A sequential implementation of a reduction using a collector would
 * create a single result container using the supplier function, and invoke the
 * accumulator function once for each input element. 
 
 * A parallel implementation
 * would partition the input, create a result container for each partition,
 * accumulate the contents of each partition into a subresult for that partition,
 * and then use the combiner function to merge the subresults into a combined
 * result.
 一個匯聚操做串行的實現,會建立一個惟一的一個結果容器.使用<Supplier>函數. 每個輸入元素都會調用累積函數(accumulator())一次. 
 
 一個並行的實現,將會對輸入進行分區,分紅多個區域,每一次分區都會建立一個結果容器,而後函數.累積每個結果容器的內容區內造成一個,而後經過comtainer()給合併成一個.
 -- 解釋:
 combiner函數,假若有4個線程同時去執行,那麼就會生成4個部分結果.
 結果分別是:1.2.3.4
 多是:
 1.2 -> 5 
 5.3 -> 6
 6.4 -> 7
 這5.6.7新建立的集合,就叫作 新的結果容器
 
 也多是:
 1.2 -> 1+2 (新的一個)
 1.3 -> 1(新的一個)
 這種新的摺疊後的,叫作摺疊成一個參數容器.
 
 *
 * <p>To ensure that sequential and parallel executions produce equivalent
 * results, the collector functions must satisfy an <em>identity</em> and an
 * <a href="package-summary.html#Associativity">associativity</a> constraints.
 爲了確保串行與並行得到等價的結果.  collector(收集器)的函數必須知足2個條件.
 1. identity: 同一性
 2. Associativity :結合性
 
 *
 * <p>The identity constraint says that for any partially accumulated result,
 * combining it with an empty result container must produce an equivalent
 * result.  That is, for a partially accumulated result {@code a} that is the
 * result of any series of accumulator and combiner invocations, {@code a} must
 * be equivalent to {@code combiner.apply(a, supplier.get())}.
 同一性是說:針對於任何部分累積的結果來講,將他與一個空的容器融合,必須會生成一個等價的結果.等價於部分的累積結果.
 也就是說對於一個部分的累積結果a,對於任何一條線上的combiner invocations.
 a == combiner.apply(a, supplier.get())
    supplier.get() ,獲取一個空的結果容器.
    而後將a與空的結果容器容器. 保證a == (融合等式) .
    
    這個特性就是:同一性.
    
 --部分累積的結果:是在流程中產生的中間結果.
 --解釋上述等式爲何成立:a是線程某一個分支獲得的部分結果. 後面的是調用BiarnyOperator.apply()
 (List<String> list1,List<String> list2)->{list1.addAll(list2);return list1;}
 這個相似於以前說的: 將兩個結果集摺疊到同一個容器.而後返回來第一個結果的融合.
 
 *
 * <p>The associativity constraint says that splitting the computation must
 * produce an equivalent result.  That is, for any input elements {@code t1}
 * and {@code t2}, the results {@code r1} and {@code r2} in the computation
 * below must be equivalent:
  結合性是說:分割執行的時候,也必須產生相同的結果.每一份處理完以後,也獲得相應的結果.
 
 * <pre>{@code
 *     A a1 = supplier.get();//獲取結果容器 a1.
 *     accumulator.accept(a1, t1); //a1:每一次累積的中間結果, t1:流中下一個待累積的元素.
 *     accumulator.accept(a1, t2); //t1->a1, a1已經有東西. 而後 t2->t1 = r1 (也就是下一步)
 *     R r1 = finisher.apply(a1);  // result without splitting
 *
 *     A a2 = supplier.get();  //另一個線程
 *     accumulator.accept(a2, t1);   //兩個結果集轉換成中間結果.
 *     A a3 = supplier.get();  //第三個線程
 *     accumulator.accept(a3, t2); //兩個中間結果轉換成最終結果.
 *     R r2 = finisher.apply(combiner.apply(a2, a3));  // result with splitting
 * } </pre>
因此要保證:不管是單線程,仍是多線程(串行和並行)的結果都要是同樣的. 
這就是所謂的:結合性.
 
 --我的註釋:今後看出,雖然新的jdk版本對開發人員提供了很大的遍歷,可是從底層角度來講,實現確實是很是複雜的.
 --對外提供很簡單的接口使用.  (必定是框架給封裝到底層了,因此你才用着簡單.)
 
 *
 * <p>For collectors that do not have the {@code UNORDERED} characteristic,
 * two accumulated results {@code a1} and {@code a2} are equivalent if
 * {@code finisher.apply(a1).equals(finisher.apply(a2))}.  For unordered
 * collectors, equivalence is relaxed to allow for non-equality related to
 * differences in order.  (For example, an unordered collector that accumulated
 * elements to a {@code List} would consider two lists equivalent if they
 * contained the same elements, ignoring order.)
對於一個不包含無序的收集器來講, a1 和 a2是等價的. 條件:finisher.apply(a1).equals(finisher.apply(a2)
對於無序的收集器來講:這種等價性就沒有那麼嚴格了,它會考慮到順序上的區別所對應的不相等性.

 *
 * <p>Libraries that implement reduction based on {@code Collector}, such as
 * {@link Stream#collect(Collector)}, must adhere to the following constraints:
 基於Collector 去實現匯聚(reduction)操做的這種庫, 必須遵照以下的約定.
 
 - 註釋:匯聚其實有多種實現.
 如Collectors中的reducting(). 
 如Stream接口中有三種reduce()重載的方法.
 
 這兩個有很大的本質的差異: (注意單線程和多線程狀況下的影響.)
 reduce:要求不可變性
 Collectors收集器方式:可變的結果容器.
 
 * <ul>
 *     <li>The first argument passed to the accumulator function, both
 *     arguments passed to the combiner function, and the argument passed to the
 *     finisher function must be the result of a previous invocation of the
 *     result supplier, accumulator, or combiner functions.</li>
            1. 傳遞給accumulate函數的參數,以及給Combiner的兩個參數,以及finisher函數的參數,
                他們必須是 這幾個supplier, accumulator, or combiner 函數函數上一次調用的結果(泛型-T).
 
 *     <li>The implementation should not do anything with the result of any of
 *     the result supplier, accumulator, or combiner functions other than to
 *     pass them again to the accumulator, combiner, or finisher functions,
 *     or return them to the caller of the reduction operation.</li>
            2. 實現不該該對, 生成的  ---  結果 作任何的事情. 除了將他們再傳給下一個函數.
            (中間不要作任何的操做,不然確定是紊亂的.)
            
 *     <li>If a result is passed to the combiner or finisher
 *     function, and the same object is not returned from that function, it is
 *     never used again.</li>
            3.若是一個結果被傳遞給combiner或者finisher函數,相同的對象並無從函數裏面返回,
                那麼他們不再會被使用了.(表示已經被用完了.)
                
 *     <li>Once a result is passed to the combiner or finisher function, it
 *     is never passed to the accumulator function again.</li>
            4.一個函數若是被執行給了combiner或者finisher函數以後,它不再會被accumulate函數調用了.
                (就是說,若是被結束函數執行完了. 就不會再被中間操做了.)
 
 *     <li>For non-concurrent collectors, any result returned from the result
 *     supplier, accumulator, or combiner functions must be serially
 *     thread-confined.  This enables collection to occur in parallel without
 *     the {@code Collector} needing to implement any additional synchronization.
 *     The reduction implementation must manage that the input is properly
 *     partitioned, that partitions are processed in isolation, and combining
 *     happens only after accumulation is complete.</li>
            5. 對於非併發的收集起來講.從supplier, accumulator, or combiner任何的結果返回必定是被限定在當前的線程了. 因此能夠被用在並行的操做了.
            reduction的操做必須被確保被正確的分析了,4個線程,被分爲4個區,不會相互干擾,再都執行完畢以後,再講中間容器進行融合.造成最終結果返回.
 
 *     <li>For concurrent collectors, an implementation is free to (but not
 *     required to) implement reduction concurrently.  A concurrent reduction
 *     is one where the accumulator function is called concurrently from
 *     multiple threads, using the same concurrently-modifiable result container,
 *     rather than keeping the result isolated during accumulation.
            6.對於併發的收集器,實現能夠自由的選擇. 和上面的5相對於.
            在累積階段不須要保持獨立性.
 
 *     A concurrent reduction should only be applied if the collector has the
 *     {@link Characteristics#UNORDERED} characteristics or if the
 *     originating data is unordered.</li>
 一個併發的,在這個時候必定會被使用; 無序的.
    
--到此結束,重要的 概念基本上已經介紹完畢了.

 * </ul>
 
 *
 * <p>In addition to the predefined implementations in {@link Collectors}, the
 * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)}
 * can be used to construct collectors.  For example, you could create a collector
 * that accumulates widgets into a {@code TreeSet} with:
 *
 * <pre>{@code
 *     Collector<Widget, ?, TreeSet<Widget>> intoSet =
 *         Collector.of(TreeSet::new, TreeSet::add,
 *                      (left, right) -> { left.addAll(right); return left; });
 * }</pre>

        使用.三個參數構造的 of 方法,()
        三個參數
        1.結果容器
        2.將數據元素累積添加到結果容器
        3.返回結果容器.(此處使用TreeSet)

 *
 * (This behavior is also implemented by the predefined collector.預約義的Collector.
 * {@link Collectors#toCollection(Supplier)}).
 *
 * @apiNote
 * Performing a reduction operation with a {@code Collector} should produce a
 * result equivalent to:
 * <pre>{@code
 *     R container = collector.supplier().get();
 *     for (T t : data)
 *         collector.accumulator().accept(container, t);
 *     return collector.finisher().apply(container);
 * }</pre>
 上述:匯聚容器的實現過程.
 1.建立一個容器
 2.累加到容器
 3.返回結果容器.
 
 *
 * <p>However, the library is free to partition the input, perform the reduction
 * on the partitions, and then use the combiner function to combine the partial
 * results to achieve a parallel reduction.  (Depending on the specific reduction
 * operation, this may perform better or worse, depending on the relative cost
 * of the accumulator and combiner functions.)
 性能的好壞:取決於實際狀況.
 (並行不必定比串行性能高.)
 
 *
 * <p>Collectors are designed to be <em>composed</em>; many of the methods
 * in {@link Collectors} are functions that take a collector and produce
 * a new collector.  For example, given the following collector that computes
 * the sum of the salaries of a stream of employees:
 收集器自己被設計成能夠組合的. 也就是說收集器自己的組合.例以下.
 
 *
 * <pre>{@code
 *     Collector<Employee, ?, Integer> summingSalaries
 *         = Collectors.summingInt(Employee::getSalary))
 * }</pre>
 Collector(),三個參數.  
 
 *
 * If we wanted to create a collector to tabulate the sum of salaries by
 * department, we could reuse the "sum of salaries" logic using
 * {@link Collectors#groupingBy(Function, Collector)}:
 若是想建立一個組合的容器.
 就是以前用的groupingBy()的分類函數.以下例子.
 
 *
 * <pre>{@code
 *     Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept
 *         = Collectors.groupingBy(Employee::getDepartment, summingSalaries);
 * }</pre>
 分組->求和
 分組->求和
 二級分組.
 
 *
 * @see Stream#collect(Collector)
 * @see Collectors
 *
 * @param <T> the type of input elements to the reduction operation
 * @param <A> the mutable accumulation type of the reduction operation (often
 *            hidden as an implementation detail)
 * @param <R> the result type of the reduction operation
 * @since 1.8
 */

理解到這裏,受益不淺.函數

Collector接口詳解

Collector的三個泛型<T,A,R>詳解

* @param <T> the type of input elements to the reduction operation
 * @param <A> the mutable accumulation type of the reduction operation (often
 *            hidden as an implementation detail)
 * @param <R> the result type of the reduction operatio
  • T:須要被融合操做的輸入參數的類型 (也就是流中的每個元素的類型)
  • A:reduction操做的可變的累積的類型.(累積的集合的類型.)(中間結果容器的類型.)(返回結果容器的類型)
  • R:匯聚操做的結果類型.

supplier()

/**
     * A function that creates and returns a new mutable result container.
     * 建立一個新的可變結果容器.返回 Supplier函數式接口.
     * @return a function which returns a new, mutable result container
            泛型 - A : 可變容器的類型.
     */
    Supplier<A> supplier();

accumulator()

/**
 * A function that folds a value into a mutable result container.
 * 將一個新的元素數據元素摺疊(累加)到一個結果容器當中. 返回值爲 BiConsumer函數式接口
 * @return a function which folds a value into a mutable result container
 泛型-A:返回的中間容器的類型(結果類型)
 泛型-T:流中待處理的下一個元素的類型.(源類型)
 */
BiConsumer<A, T> accumulator();

combiner()

/**
和並行流緊密相關.
 * A function that accepts two partial results and merges them.  The
 * combiner function may fold state from one argument into the other and
 * return that, or may return a new result container.
 * 接收兩個部分結果,而後給合併起來.將結果狀態從一個參數轉換成另外一個參數,或者返回一個新的結果容器....*(有點難理解.) 返回一個組合的操做符函數接口類.
 
 -- 解釋:
 combiner函數,假若有4個線程同時去執行,那麼就會生成4個部分結果.
 結果分別是:1.2.3.4
 多是:
 1.2 -> 5 
 5.3 -> 6
 6.4 -> 7
 這5.6.7新建立的集合,就叫作 新的結果容器
 
 也多是:
 1.2 -> 1+2 (新的一個)
 1.3 -> 1(新的一個)
 這種新的摺疊後的,叫作摺疊成一個參數容器.
 
 因此:combiner 是 專門用在 並行流中的.
 
 * @return a function which combines two partial results into a combined
 * result
 泛型-A: (結果容器類型.中間結果容器的類型.) TTT 
 */
BinaryOperator<A> combiner();

finisher()

/**
 * Perform the final transformation from the intermediate accumulation type
 * {@code A} to the final result type {@code R}.
 *接收一箇中間對象,返回另一個結果.對象.
 * <p>If the characteristic {@code IDENTITY_TRANSFORM} is
 * set, this function may be presumed to be an identity transform with an
 * unchecked cast from {@code A} to {@code R}.
 *若是這個特性被設置值了的話,.....  返回一個Function接口類型.
 * @return a function which transforms the intermediate result to the final
 * result
 泛型-A :結果容器類型
 泛型-R : 最終要使用的類型.(最終返回的結果的類型.)
 */
Function<A, R> finisher();

枚舉類 Characteristics

/**
     * Characteristics indicating properties of a {@code Collector}, which can
     * be used to optimize reduction implementations.
      這個類中顯示的這些屬性,被用做:優化匯聚的實現.
      
      --解釋: 類的做用:告訴收集器,我能夠對這個目標進行怎麼樣的執行動做.
     */
    enum Characteristics {
        /**
         * Indicates that this collector is <em>concurrent</em>, meaning that
         * the result container can support the accumulator function being
         * called concurrently with the same result container from multiple
         * threads.
         *
         * <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED},
         * then it should only be evaluated concurrently if applied to an
         * unordered data source.
         */
        CONCURRENT,//表示能夠支持併發.

        /**
         * Indicates that the collection operation does not commit to preserving
         * the encounter order of input elements.  (This might be true if the
         * result container has no intrinsic order, such as a {@link Set}.)
         */
        UNORDERED,

        /**
         * Indicates that the finisher function is the identity function and
         * can be elided.  If set, it must be the case that an unchecked cast
         * from A to R will succeed.
         */
        IDENTITY_FINISH
    }
相關文章
相關標籤/搜索