codec => plain { charset => "GB2312" }
將GB2312 的文本編碼,轉爲UTF-8 的編碼java
filebeat.prospectors: - input_type: log paths: - c:\Users\Administrator\Desktop\performanceTrace.txt encoding: GB2312
if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") { #用正則需刪除的多餘行 drop {} }
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需刪除的行 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
(1)日誌示例:react
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
match => { "message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}" } match => { "message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*" } match => { "message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*" } ... 等多行
(2)日誌示例:linux
# 這是一條INFO 日誌 2018-09-06 21:21:40.536 [490343b4207b39e5,490343b4207b39e5] [reactor-http-epoll-4] INFO c.w.w.p.i.config.SecurityFilter - [filter,75] - skipFlag:false uri:/report-server/daily/queryDailyReportChannel authorization:GbUzq6IElKkvRswreIHd8Xv/YMDd885jyINObc543vx2H+0lhdu0p5bOu0Vd9PT+jgxJpXHYyZiPgQmyio5Sfg== # 這個一條ERROR日誌 2018-09-06 21:21:15.863 [548809be071dd887,548809be071dd887] [reactor-http-epoll-4] ERROR c.w.w.c.e.WebExceptionHandler - [handle,34] - 系統異常:/report-server/game/queryPartnerGameReport\ncom.wbgg.wbcommon.core.base.exception.BusinessException: 您的帳號未登陸,請登陸後再操做!\n\tat com.wbgg.wbcommon.core.base.wrapper.Wrapper.check(Wrapper.java:155)\n\tat com.wbgg.wbgateway.pc.infrastructure.config.SecurityFilter.filter(SecurityFilter.java:86)\n\tat org.springframework.cloud.gateway.handler.FilteringWebHandler$GatewayFilterAdapter.filter(FilteringWebHandler.java:135)\n\tat org.springframework.cloud.gateway.filter.OrderedGatewayFilter.filter(OrderedGatewayFilter.java:44)\n\tat org.springframework.cloud.gateway.handler.FilteringWebHandler$DefaultGatewayFilterChain.lambda$filter$0(FilteringWebHandler.java:117)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)\n\tat reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapInner.onNext(MonoFlatMap.java:241)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapInner.onSubscribe(MonoFlatMap.java:230)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxOnErrorResume$ResumeSubscriber.onNext(FluxOnErrorResume.java:73)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxPeek$PeekSubscriber.onNext(FluxPeek.java:192)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.innerResult(MonoFilterWhen.java:193)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:260)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:228)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onSubscribe(MonoFilterWhen.java:249)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onNext(MonoFilterWhen.java:150)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onSubscribe(MonoFilterWhen.java:103)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFilterWhen.subscribe(MonoFilterWhen.java:56)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoPeek.subscribe(MonoPeek.java:71)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:114)\n\tat reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:42)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:395)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onNext(FluxFlattenIterable.java:242)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxPeekFuseable$PeekFuseableSubscriber.onNext(FluxPeekFuseable.java:204)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.DrainUtils.postCompleteDrain(DrainUtils.java:131)\n\tat reactor.core.publisher.DrainUtils.postComplete(DrainUtils.java:186)\n\tat reactor.core.publisher.FluxMaterialize$MaterializeSubscriber.onComplete(FluxMaterialize.java:134)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:325)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onComplete(FluxFlattenIterable.java:259)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxMapFuseable$MapFuseableSubscriber.onComplete(FluxMapFuseable.java:144)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1508)\n\tat reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.checkTerminated(FluxFlatMap.java:794)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.drainLoop(FluxFlatMap.java:560)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.drain(FluxFlatMap.java:540)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.onComplete(FluxFlatMap.java:426)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:265)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.onSubscribe(FluxFlatMap.java:335)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxFlatMap.subscribe(FluxFlatMap.java:97)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoMapFuseable.subscribe(MonoMapFuseable.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxMaterialize.subscribe(FluxMaterialize.java:40)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:74)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxDematerialize.subscribe(FluxDematerialize.java:39)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:54)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:243)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onSubscribe(FluxConcatMap.java:229)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat org.springframework.cloud.sleuth.instrument.web.TraceWebFilter$MonoWebFilterTrace.subscribe(TraceWebFilter.java:180)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)\n\tat reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:70)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.netty.http.server.HttpServerHandle.onStateChange(HttpServerHandle.java:64)\n\tat reactor.netty.tcp.TcpServerBind$ChildObserver.onStateChange(TcpServerBind.java:226)\n\tat reactor.netty.http.server.HttpServerOperations.onInboundNext(HttpServerOperations.java:434)\n\tat reactor.netty.channel.ChannelOperationsHandler.channelRead(ChannelOperationsHandler.java:141)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat reactor.netty.http.server.HttpTrafficHandler.channelRead(HttpTrafficHandler.java:160)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat io.netty.channel.CombinedChannelDuplexHandler$DelegatingChannelHandlerContext.fireChannelRead(CombinedChannelDuplexHandler.java:438)\n\tat io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:328)\n\tat io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:302)\n\tat io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1422)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:931)\n\tat io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)\n\tat io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:433)\n\tat io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:330)\n\tat io.netty.util.concurrent.SingleThreadEventExecutor$6.run(SingleThreadEventExecutor.java:1044)\n\tat io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)\n\tat java.lang.Thread.run(Thread.java:748)
input { kafka { id => "test-kafka-input" bootstrap_servers => ["192.168.0.250:9092"] # kafka地址 group_id => "logstash" # kafka group topics => ["test", "filebeat"] # kafka topics codec => json # 設定輸入類型爲json } } filter { # mutate { # gsub => [ "message", "\r", "" ] # 替換掉換行符 # } grok { match => ["message","%{TIMESTAMP_ISO8601:timestamp}\s+%{SYSLOG5424SD:uid}\s+%{SYSLOG5424SD:threadid}\s+%{LOGLEVEL:loglevel}\s+%{JAVACLASS:javaclass}\s+.?\s+%{SYSLOG5424SD}\s+.?\s+%{GREEDYDATA:message}"] # 配置正則表達式和標籤匹配日誌 overwrite => ["message"] # 將上面%{GREEDYDATA:message} 標籤覆蓋到message上 } date { match => [ "timestamp", "yyyy-MM-dd HH:mm:ss,SSS" ] # 配置timestamp 時間格式 target => "@timestamp" # 將上面grok正則匹配的標籤timestamp 覆蓋到默認date "@timestamp" 上面,以便kibana中看到打印的最新時間 } # 下面這段是爲了解決Elasticsearch 默認時間是0時區,不是東八區,因此默認顯示時間比東八區少8個小時,這時咱們經過ruby 進行時間格式的修改,增長8個小時,示例以下: ruby { code => "event.set('timestamp', event.get('@timestamp').time.localtime + 8*60*60)" } ruby { code => "event.set('@timestamp',event.get('timestamp'))" } # 配置要刪除的多餘的一些字符串,經過mutate模塊進行刪除 mutate { remove_field => ["timestamp","hostname","tags","stream","agent","ecs","input","[kubernetes][container][name]","[kubernetes][labels][pod-template-hash]","[kubernetes][pod][uid]","[kubernetes][replicaset]","@version","[log][offset]"] } json { source => "@fields" # 刪除filebeat 自帶的不須要的元數據 remove_field => [ "beat","@fields","fields","index_name","offset","source","message","time","tags"] } # json { # source => "message" # remove_field => [ "message" ] # } # multiline { # pattern => "^\d{4}-\d{1,2}-\d{1,2}\s\d{1,2}:\d{1,2}:\d{1,2}" # negate => true # what => "previous" # } } output { elasticsearch { hosts => ["http://192.168.0.250:9200"] user => logstash_admin password => "YHkdypsPKqw5gaWKE" index => "game-filebeat-%{+YYYY.MM.dd}" } #file { # path => "/test/bak/test.txt" #} }
(1)示例:ios
① 日誌golang
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
② logstash grok 對合並後多行的處理(合併多行後續都同樣,以下)web
filter { grok { match => { "message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End" } } }
(2)在filebeat中使用multiline 插件(推薦)正則表達式
① 介紹multilineredis
pattern:正則匹配從哪行合併spring
negate:true/false,匹配到pattern 部分開始合併,仍是不配到的合併json
match:after/before(需本身理解)
after:匹配到pattern 部分後合併,注意:這種狀況最後一行日誌不會被匹配處理
before:匹配到pattern 部分前合併(推薦)
② 5.5版本以後(before爲例)
filebeat.prospectors: - input_type: log paths: - /root/performanceTrace* fields: type: zidonghualog multiline.pattern: '.*\"WaitInterval\":.*--\ End' multiline.negate: true multiline.match: before
③ 5.5版本以前(after爲例)
filebeat.prospectors: - input_type: log paths: - /root/performanceTrace* input_type: log multiline: pattern: '^20.*' negate: true match: after
(3)在logstash input中使用multiline 插件(沒有filebeat 時推薦)
① 介紹multiline
pattern:正則匹配從哪行合併
negate:true/false,匹配到pattern 部分開始合併,仍是不配到的合併
what:previous/next(需本身理解)
previous:至關於filebeat 的after
next:至關於filebeat 的before
② 用法
input { file { path => ["/root/logs/log2"] start_position => "beginning" codec => multiline { pattern => "^20.*" negate => true what => "previous" } } }
(4)在logstash filter中使用multiline 插件(不推薦)
(a)不推薦的緣由:
① filter設置multiline後,pipline worker會自動將爲1
② 5.5 版本官方把multiline 去除了,要使用的話需下載,下載命令以下:
/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline
(b)示例:
filter { multiline { pattern => "^20.*" negate => true what => "previous" } }
2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
date { match => ["InsertTime","YYYY-MM-dd HH:mm:ss "] remove_field => "InsertTime" }
注:
match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]
匹配這個字段,字段的格式爲:日日/月月月/年年年年 時/分/秒 時區
也能夠寫爲:match => ["timestamp","ISO8601"](推薦)
就是將匹配日誌中時間的key 替換爲@timestamp 的時間,由於@timestamp 的時間是日誌送到logstash 的時間,並非日誌中真正的時間。
① 在filebeat 的配置中添加type 分類
filebeat: prospectors: - paths: - /mnt/data_total/WebApiDebugLog.txt* fields: type: WebApiDebugLog_total - paths: - /mnt/data_request/WebApiDebugLog.txt* fields: type: WebApiDebugLog_request - paths: - /mnt/data_report/WebApiDebugLog.txt* fields: type: WebApiDebugLog_report
② 在logstash filter中使用if,可進行對不一樣類進行不一樣處理
filter { if [fields][type] == "WebApiDebugLog_request" { #對request 類日誌 if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") { #刪除report 行 drop {} } grok { match => {"... ..."} } }
③ 在logstash output中使用if
if [fields][type] == "WebApiDebugLog_total" { elasticsearch { hosts => ["6.6.6.6:9200"] index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}" document_type => "WebApiDebugLog_total_logs" }
假設每條日誌250 Byte
① logstash硬件Linux:1cpu 4GRAM
每秒500條日誌 去掉ruby每秒660條日誌 去掉grok後每秒1000條數據
② filebeat硬件Linux:1cpu 4GRAM
每秒2500-3500條數據 天天每臺機器可處理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,約64G
③ 瓶頸在logstash 從redis中取數據存入ES,開啓一個logstash,每秒約處理6000條數據;開啓兩個logstash,每秒約處理10000條數據(cpu已基本跑滿);
④ logstash的啓動過程佔用大量系統資源,由於腳本中要檢查java、ruby以及其餘環境變量,啓動後資源佔用會恢復到正常狀態。
① logstash因爲集成了衆多插件,如grok,ruby,因此相比beat是重量級的;
② logstash啓動後佔用資源更多,若是硬件資源足夠則無需考慮兩者差別;
③ logstash基於JVM,支持跨平臺;而beat使用golang編寫,AIX不支持;
④ AIX 64bit平臺上須要安裝jdk(jre) 1.7 32bit,64bit的不支持;
⑤ filebeat能夠直接輸入到ES,可是系統中存在logstash直接輸入到ES的狀況,這將形成不一樣的索引類型形成檢索複雜,最好統一輸入到els 的源。
logstash/filter 總之各有千秋,可是,我推薦選擇:在每一個須要收集的日誌服務器上配置filebeat,由於輕量級,用於收集日誌;再統一輸出給logstash,作對日誌的處理;最後統一由logstash 輸出給es。中間也開增長kafka消息隊列進行緩存。
① pipeline 線程數,官方建議是等於CPU內核數
默認配置 ---> pipeline.workers: 2
可優化爲 ---> pipeline.workers: CPU內核數(或幾倍cpu內核數)
② 實際output 時的線程數
默認配置 ---> pipeline.output.workers: 1
可優化爲 ---> pipeline.output.workers: 不超過pipeline 線程數
③ 每次發送的事件數
默認配置 ---> pipeline.batch.size: 125
可優化爲 ---> pipeline.batch.size: 1000
④ 發送延時
默認配置 ---> pipeline.batch.delay: 5
可優化爲 ---> pipeline.batch.size: 10
經過設置-w參數指定pipeline worker數量,也可直接修改配置文件logstash.yml。這會提升filter和output的線程數,若是須要的話,將其設置爲cpu核心數的幾倍是安全的,線程在I/O上是空閒的。
默認每一個輸出在一個pipeline worker線程上活動,能夠在輸出output 中設置workers設置,不要將該值設置大於pipeline worker數。
還能夠設置輸出的batch_size數,例如ES輸出與batch size一致。
filter設置multiline後,pipline worker會自動將爲1,若是使用filebeat,建議在beat中就使用multiline,若是使用logstash做爲shipper,建議在input 中設置multiline,不要在filter中設置multiline。
Logstash是一個基於Java開發的程序,須要運行在JVM中,能夠經過配置jvm.options來針對JVM進行設定。好比內存的最大最小、垃圾清理機制等等。JVM的內存分配不能太大不能過小,太大會拖慢操做系統。過小致使沒法啓動。默認以下:
-Xms256m # 最小使用內存 -Xmx1g # 最大使用內存
(1)filebeat能夠直接輸入到logstash(indexer),但logstash沒有存儲功能,若是須要重啓須要先停全部連入的beat,再停logstash,形成運維麻煩;另外若是logstash發生異常則會丟失數據;引入Redis做爲數據緩衝池,當logstash異常中止後能夠從Redis的客戶端看到數據緩存在Redis中;
(2)Redis可使用list(最長支持4,294,967,295條)或發佈訂閱存儲模式;
(3)redis 作elk 緩衝隊列的優化:
① bind 0.0.0.0 #不要監聽本地端口
② requirepass ilinux.io #加密碼,爲了安全運行
③ 只作隊列,不必持久存儲,把全部持久化功能關掉:快照(RDB文件)和追加式文件(AOF文件),性能更好
save "" 禁用快照 appendonly no 關閉RDB
④ 把內存的淘汰策略關掉,把內存空間最大
maxmemory 0 #maxmemory爲0的時候表示咱們對Redis的內存使用沒有限制
(a) /etc/sysctl.conf 配置
vim /etc/sysctl.conf
vm.swappiness = 1 # ES 推薦將此參數設置爲 1,大幅下降 swap 分區的大小,強制最大程度的使用內存,注意,這裏不要設置爲 0, 這會極可能會形成 OOM net.core.somaxconn = 65535 # 定義了每一個端口最大的監聽隊列的長度 vm.max_map_count= 262144 # 限制一個進程能夠擁有的VMA(虛擬內存區域)的數量。虛擬內存區域是一個連續的虛擬地址空間區域。當VMA 的數量超過這個值,OOM fs.file-max = 518144 # 設置 Linux 內核分配的文件句柄的最大數量
[root@elasticsearch]# sysctl -p 生效一下
(b)limits.conf 配置
vim /etc/security/limits.conf elasticsearch soft nofile 65535 elasticsearch hard nofile 65535 elasticsearch soft memlock unlimited elasticsearch hard memlock unlimited
(c)爲了使以上參數永久生效,還要設置兩個地方
vim /etc/pam.d/common-session-noninteractive vim /etc/pam.d/common-session 添加以下屬性: session required pam_limits.so 可能需重啓後生效
-Xms2g -Xmx2g
① 將最小堆大小(Xms)和最大堆大小(Xmx)設置爲彼此相等。
② Elasticsearch可用的堆越多,可用於緩存的內存就越多。但請注意,太多的堆可能會使您長時間垃圾收集暫停。
③ 設置Xmx爲不超過物理RAM的50%,以確保有足夠的物理內存留給內核文件系統緩存。
④ 不要設置Xmx爲JVM用於壓縮對象指針的臨界值以上;確切的截止值有所不一樣,但接近32 GB。不要超過32G,若是空間大,多跑幾個實例,不要讓一個實例太大內存
① vim elasticsearch.yml
bootstrap.memory_lock: true #鎖住內存,不使用swap #緩存、線程等優化以下 bootstrap.mlockall: true transport.tcp.compress: true indices.fielddata.cache.size: 40% indices.cache.filter.size: 30% indices.cache.filter.terms.size: 1024mb threadpool: search: type: cached size: 100 queue_size: 2000
② 設置環境變量
vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g #Heap Size不超過物理內存的一半,且小於32G
① ES是分佈式存儲,當設置一樣的cluster.name後會自動發現並加入集羣;
② 集羣會自動選舉一個master,當master宕機後從新選舉;
③ 爲防止"腦裂",集羣中個數最好爲奇數個
④ 爲有效管理節點,可關閉廣播 discovery.zen.ping.multicast.enabled: false,並設置單播節點組discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]
Logstash和其鏈接的服務運行速度一致,它能夠和輸入、輸出的速度同樣快。
① CPU
注意CPU是否過載。在Linux/Unix系統中可使用top -H查看進程參數以及總計。
若是CPU使用太高,直接跳到檢查JVM堆的章節並檢查Logstash worker設置。
② Memory
注意Logstash是運行在Java虛擬機中的,因此它只會用到你分配給它的最大內存。
檢查其餘應用使用大量內存的狀況,這將形成Logstash使用硬盤swap,這種狀況會在應用佔用內存超出物理內存範圍時。
③ I/O 監控磁盤I/O檢查磁盤飽和度
使用Logstash plugin(例如使用文件輸出)磁盤會發生飽和。
當發生大量錯誤,Logstash生成大量錯誤日誌時磁盤也會發生飽和。
在Linux中,可以使用iostat,dstat或者其餘命令監控磁盤I/O
④ 監控網絡I/O
當使用大量網絡操做的input、output時,會致使網絡飽和。
在Linux中可以使用dstat或iftop監控網絡狀況。
heap設置過小會致使CPU使用率太高,這是由於JVM的垃圾回收機制致使的。
一個快速檢查該設置的方法是將heap設置爲兩倍大小而後檢測性能改進。不要將heap設置超過物理內存大小,保留至少1G內存給操做系統和其餘進程。
你可使用相似jmap命令行或VisualVM更加精確的計算JVM heap