將數據從microdost sql數據庫導出到cvs,excel和txt文件。html
# Import libraries
import pandas as pd import sys from sqlalchemy import create_engine, MetaData, Table, select
print('Python version ' + sys.version) print('Pandas version ' + pd.__version__)
# Parameters
TableName = "data" DB = { 'drivername': 'mssql+pyodbc', 'servername': 'DAVID-THINK', #'port': '5432', #'username': 'lynn', #'password': '', 'database': 'BizIntel', 'driver': 'SQL Server Native Client 11.0', 'trusted_connection': 'yes', 'legacy_schema_aliasing': False } # Create the connection engine = create_engine(DB['drivername'] + '://' + DB['servername'] + '/' + DB['database'] + '?' + 'driver=' + DB['driver'] + ';' + 'trusted_connection=' + DB['trusted_connection'], legacy_schema_aliasing=DB['legacy_schema_aliasing']) conn = engine.connect() # Required for querying tables metadata = MetaData(conn) # Table to query tbl = Table(TableName, metadata, autoload=True, schema="dbo") #tbl.create(checkfirst=True) # Select all sql = tbl.select() # run sql code result = conn.execute(sql) # Insert to a dataframe df = pd.DataFrame(data=list(result), columns=result.keys()) # Close connection conn.close() print('Done')
下面的全部文件將保存到當前的文件夾中。sql
df.to_csv('DimDate.csv', index=False) print('Done')
df.to_excel('DimDate.xls', index=False) print('Done')
df.to_csv('DimDate.txt', index=False) print('Done')
This tutorial was rewrited by CDS數據庫