HDU 4759 Poker Shuffle

Poker Shuffle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 226    Accepted Submission(s): 78


php

Problem Description
Jason is not only an ACMer, but also a poker nerd. He is able to do a perfect shuffle. In a perfect shuffle, the deck containing K cards, where K is an even number, is split into equal halves of K/2 cards which are then pushed together in a certain way so as to make them perfectly interweave. Suppose the order of the cards is (1, 2, 3, 4, …, K-3, K-2, K-1, K). After a perfect shuffle, the order of the cards will be (1, 3, …, K-3, K-1, 2, 4, …, K-2, K) or (2, 4, …, K-2, K, 1, 3, …, K-3, K-1). 
Suppose K=2^N and the order of the cards is (1, 2, 3, …, K-2, K-1, K) in the beginning, is it possible that the A-th card is X and the B-th card is Y after several perfect shuffles?
 

 

Input
Input to this problem will begin with a line containing a single integer T indicating the number of datasets.
Each case contains five integer, N, A, X, B, Y. 1 <= N <= 1000, 1 <= A, B, X, Y <= 2^N.
 

 

Output
For each input case, output 「Yes」 if it is possible that the A-th card is X and the B-th card is Y after several perfect shuffles, otherwise 「No」.
 

 

Sample Input
3 1 1 1 2 2 2 1 2 4 3 2 1 1 4 2
 

 

Sample Output
Case 1: Yes Case 2: Yes Case 3: No
 

 

Source
 

 

Recommend
liuyiding
 
舉個例子,當n=3,每張牌的編號從0開始時:

 每次洗牌的時候,奇數在後偶數在前時,只需循環右移一下,以下:java

0(000) -->0(000) -->0(000) -->0(000)this

1(001) -->4(100) -->2(010) -->1(001)spa

2(010) -->1(001) -->4(100) -->2(010)code

3(011) -->5(101) -->6(110) -->3(011)blog

4(100) -->2(010) -->1(001) -->4(100)ip

5(101) -->6(110) -->3(011) -->5(101)ci

6(110) -->3(011) -->5(101) -->6(110)get

7(111) -->7(111) -->7(111) -->7(111)input

 

奇數在前偶數在後時,只需右移一下,高位亦或1,以下(從右向左看):

000(0) -> 100(4) -> 110(6) -> 111(7) -> 011(3) -> 001(1) -> 000(0)

001(1) -> 000(0) -> 100(4) -> 110(6) -> 111(7) -> 011(3) -> 001(1)

010(2) -> 101(5) -> 010(2) -> 101(5) -> 010(2) -> 101(5) -> 010(2)

011(3) -> 001(1) -> 000(0) -> 100(4) -> 110(6) -> 111(7) -> 011(3)

100(4) -> 110(6) -> 111(7) -> 011(3) -> 001(1) -> 000(0) -> 100(4)

101(5) -> 010(2) -> 101(5) -> 010(2) -> 101(5) -> 010(2) -> 101(5)

110(6) -> 111(7) -> 011(3) -> 001(1) -> 000(0) -> 100(4) -> 110(6)

111(7) -> 011(3) -> 001(1) -> 000(0) -> 100(4) -> 110(6) -> 111(7)

 

從上面兩個表能夠看出,每層的任意2個數異或的結果相同,且都爲n。

 

eg:

000(0) -> 100(4) -> 110(6) -> 111(7) -> 011(3) -> 001(1) -> 000(0)

001(1) -> 000(0) -> 100(4) -> 110(6) -> 111(7) -> 011(3) -> 001(1)

010(2) -> 101(5) -> 010(2) -> 101(5) -> 010(2) -> 101(5) -> 010(2)

每行的紅色數字異或,粉紅色數字異或,藍色數字異或------>都爲7,因此,你懂得

 

import java.math.*;
import java.util.*;

public class Main{
    static int n;
    static Scanner cin = new Scanner(System.in);
    
    static BigInteger rot(BigInteger x){
        BigInteger tmp = x.and(BigInteger.valueOf(1));
        return x.shiftRight(1).or(tmp.shiftLeft(n-1));
    }
    
    public static void main(String[] args){
        int t = cin.nextInt(),    cases=0;
        while(++cases <= t){
            n = cin.nextInt();
            BigInteger A = cin.nextBigInteger(),    X = cin.nextBigInteger();
            BigInteger B = cin.nextBigInteger(),    Y = cin.nextBigInteger();
            A = A.add(BigInteger.valueOf(-1));
            B = B.add(BigInteger.valueOf(-1));
            X = X.add(BigInteger.valueOf(-1));
            Y = Y.add(BigInteger.valueOf(-1));
            String ans = "No";
            for(int i=0; i <= n; i++){
                A = rot(A);
                B = rot(B);
                BigInteger tmpx = A.xor(X);
                BigInteger tmpy = B.xor(Y);
                if(tmpx.compareTo(tmpy)==0){
                    ans = "Yes";
                    break;
                }
            }
            System.out.println("Case " + cases + ": " + ans);
        }
    }
}
相關文章
相關標籤/搜索