JavaShuo
欄目
標籤
Mix and Match: Joint Model for Clothing and Attribute Recognition
時間 2020-12-30
原文
原文鏈接
1.Introduction: 作者想驗證這樣一個假說,即共同考慮多樣的服飾和屬性相比獨立的進行檢測是否能提升檢測的準確率。例如人們不會同時穿裙子和長褲,因此服飾之間存在着這樣的排他性的關聯。不同於以往的基於像素級別的分析,本文是基於衣物飾品的語義級別來考慮的。 本文的實現是基於 Conditional Random Field的二階聯合模型,給出一張圖片考慮其對應的服飾的概率分佈,輸出最大後驗分
>>阅读原文<<
相關文章
1.
《VideoBERT: A Joint Model for Video and Language Representation Learning》
2.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
3.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
4.
[Swift A] - Using Swift with Cocoa and Objective-C--Mix and Match
5.
Constrained Joint CRF for Simultaneous FAUR and FLD
6.
語義分割--Mix-and-Match Tuning for Self-Supervised Semantic Segmentation
7.
Joint Pose and Expression Modeling for Facial Expression Recognition 論文翻譯
8.
Joint types and operation
9.
[New Paper]A Joint Model for Word Embedding and Word Morphology
10.
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
action.....and
between...and
react+and
mix
recognition
attribute
clothing
match
joint
model
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
吳恩達深度學習--神經網絡的優化(1)
2.
FL Studio鋼琴卷軸之工具菜單的Riff命令
3.
RON
4.
中小企業適合引入OA辦公系統嗎?
5.
我的開源的MVC 的Unity 架構
6.
Ubuntu18 安裝 vscode
7.
MATLAB2018a安裝教程
8.
Vue之v-model原理
9.
【深度學習】深度學習之道:如何選擇深度學習算法架構
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
《VideoBERT: A Joint Model for Video and Language Representation Learning》
2.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
3.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
4.
[Swift A] - Using Swift with Cocoa and Objective-C--Mix and Match
5.
Constrained Joint CRF for Simultaneous FAUR and FLD
6.
語義分割--Mix-and-Match Tuning for Self-Supervised Semantic Segmentation
7.
Joint Pose and Expression Modeling for Facial Expression Recognition 論文翻譯
8.
Joint types and operation
9.
[New Paper]A Joint Model for Word Embedding and Word Morphology
10.
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
>>更多相關文章<<