LOJ#2722 情報中心

解:有個暴力是枚舉兩條鏈而後O(n)斷定,能夠獲得15分。node

還能夠優化一下,枚舉一條鏈,而後第二條鏈直接求兩端點樹上帶權距離。能夠作到O(m(n + m)),可是我用的樹剖,跟上面那一檔沒啥區別Orz...c++

而後是鏈的部分,把全部鏈按照左端點小到大排序,左端點相同的時候按右端點小到大。數組

而後從右往左加。用一個樹狀數組維護前綴最大值。若是一個以前區間的左端點在咱們當前區間的右端點內,就有交。dom

咱們漏了一種狀況:一個區間被另外一個徹底包含。因而新開一個樹狀數組維護便可。注意到這種狀況在第一個樹狀數組中算出的答案不優,會被取代掉。ide

這樣就有30分了。優化

  1 /**
  2  * There is no end though there is a start in space. ---Infinity.
  3  * It has own power, it ruins, and it goes though there is a start also in the star. ---Finite.
  4  * Only the person who was wisdom can read the most foolish one from the history.
  5  * The fish that lives in the sea doesn't know the world in the land.
  6  * It also ruins and goes if they have wisdom.
  7  * It is funnier that man exceeds the speed of light than fish start living in the land.
  8  * It can be said that this is an final ultimatum from the god to the people who can fight.
  9  *
 10  * Steins;Gate
 11  */
 12 
 13 #include <bits/stdc++.h>
 14 
 15 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
 16 
 17 typedef long long LL;
 18 const int N = 100010;
 19 const LL INF = 9e18;
 20 
 21 struct Edge {
 22     int nex, v;
 23     LL len;
 24 }edge[N << 1]; int tp;
 25 
 26 struct Node {
 27     int x, y;
 28     LL z, val;
 29     inline bool operator < (const Node &w) const {
 30         if(x != w.x) return x < w.x;
 31         return y < w.y;
 32     }
 33 }node[N];
 34 
 35 int n, e[N], m, fa[N], deep[N];
 36 int num, pos[N], son[N], siz[N], top[N];
 37 LL Sum[N], sum[N << 2], d[N], tag[N << 2];
 38 
 39 inline void add(int x, int y, LL z) {
 40     tp++;
 41     edge[tp].v = y;
 42     edge[tp].len = z;
 43     edge[tp].nex = e[x];
 44     e[x] = tp;
 45     return;
 46 }
 47 
 48 void DFS_1(int x, int f) { /// get fa son siz d deep
 49     fa[x] = f;
 50     deep[x] = deep[f] + 1;
 51     siz[x] = 1;
 52     forson(x, i) {
 53         int y = edge[i].v;
 54         if(y == f) continue;
 55         d[y] = d[x] + edge[i].len;
 56         DFS_1(y, x);
 57         siz[x] += siz[y];
 58         if(siz[y] > siz[son[x]]) {
 59             son[x] = y;
 60         }
 61     }
 62     return;
 63 }
 64 
 65 void DFS_2(int x, int f) { /// get top id pos
 66     pos[x] = ++num;
 67     top[x] = f;
 68     Sum[num] = d[x] - d[fa[x]];
 69     if(son[x]) {
 70         DFS_2(son[x], f);
 71     }
 72     forson(x, i) {
 73         int y = edge[i].v;
 74         if(y == fa[x] || y == son[x]) continue;
 75         DFS_2(y, y);
 76     }
 77     return;
 78 }
 79 
 80 inline int lca(int x, int y) {
 81     while(top[x] != top[y]) {
 82         if(deep[top[x]] > deep[top[y]]) {
 83             x = fa[top[x]];
 84         }
 85         else {
 86             y = fa[top[y]];
 87         }
 88     }
 89     return deep[x] < deep[y] ? x : y;
 90 }
 91 
 92 inline LL dis(int x, int y) {
 93     return d[x] + d[y] - 2 * d[lca(x, y)];
 94 }
 95 
 96 inline void pushdown(int l, int r, int o) {
 97     if(tag[o] != -1) {
 98         if(tag[o] == 0) {
 99             sum[o << 1] = sum[o << 1 | 1] = 0;
100         }
101         else {
102             int mid = (l + r) >> 1;
103             sum[o << 1] = Sum[mid] - Sum[l - 1];
104             sum[o << 1 | 1] = Sum[r] - Sum[mid];
105         }
106         tag[o << 1] = tag[o << 1 | 1] = tag[o];
107         tag[o] = -1;
108     }
109     return;
110 }
111 
112 void Add(int L, int R, int l, int r, int o) {
113     if(L <= l && r <= R) {
114         sum[o] = Sum[r] - Sum[l - 1];
115         tag[o] = 1;
116         return;
117     }
118     int mid = (l + r) >> 1;
119     pushdown(l, r, o);
120     if(L <= mid) Add(L, R, l, mid, o << 1);
121     if(mid < R) Add(L, R, mid + 1, r, o << 1 | 1);
122     sum[o] = sum[o << 1] + sum[o << 1 | 1];
123     return;
124 }
125 
126 LL ask(int L, int R, int l, int r, int o) {
127     if(L <= l && r <= R) {
128         return sum[o];
129     }
130     int mid = (l + r) >> 1;
131     pushdown(l, r, o);
132     LL ans = 0;
133     if(L <= mid) {
134         ans += ask(L, R, l, mid, o << 1);
135     }
136     if(mid < R) {
137         ans += ask(L, R, mid + 1, r, o << 1 | 1);
138     }
139     return ans;
140 }
141 
142 inline void Add(int x, int y) {
143     while(top[x] != top[y]) {
144         if(deep[top[x]] > deep[top[y]]) {
145             std::swap(x, y);
146         }
147         Add(pos[top[y]], pos[y], 1, n, 1);
148         y = fa[top[y]];
149     }
150     if(deep[x] > deep[y]) std::swap(x, y);
151     if(x != y) Add(pos[x] + 1, pos[y], 1, n, 1);
152     return;
153 }
154 
155 inline LL ask(int x, int y) {
156     LL ans = 0;
157     while(top[x] != top[y]) {
158         if(deep[top[x]] > deep[top[y]]) {
159             std::swap(x, y);
160         }
161         ans += ask(pos[top[y]], pos[y], 1, n, 1);
162         y = fa[top[y]];
163     }
164     if(deep[x] > deep[y]) std::swap(x, y);
165     if(x != y) ans += ask(pos[x] + 1, pos[y], 1, n, 1);
166     return ans;
167 }
168 
169 inline void clear() {
170     memset(e + 1, 0, n * sizeof(int));
171     memset(son + 1, 0, n * sizeof(int));
172     tp = 0;
173     num = 0;
174     return;
175 }
176 /*
177 1
178 5
179 1 2 1
180 2 3 3
181 3 4 3
182 1 5 9
183 2
184 1 5 5
185 2 3 8
186 */
187 
188 namespace Line {
189     LL ta[N], ta2[N];
190     inline LL ask(int i) {
191         LL ans = -INF;
192         for(; i; i -= i & (-i)) {
193             ans = std::max(ans, ta[i]);
194         }
195         return ans;
196     }
197     inline void Add(int i, LL v) {
198         for(; i <= n; i += i & (-i)) {
199             ta[i] = std::max(ta[i], v);
200         }
201         return;
202     }
203     inline LL ask2(int i) {
204         LL ans = -INF;
205         for(; i; i -= i & (-i)) {
206             ans = std::max(ans, ta2[i]);
207         }
208         return ans;
209     }
210     inline void Add2(int i, LL v) {
211         for(; i <= n; i += i & (-i)) {
212             ta2[i] = std::max(ta2[i], v);
213         }
214         return;
215     }
216     inline void solve() {
217         for(int i = 1; i <= n; i++) ta2[i] = ta[i] = -INF;
218         LL ans = -INF;
219         std::sort(node + 1, node + m + 1);
220         for(int i = m; i >= 1; i--) {
221             LL temp = ask(node[i].y - 1);
222             if(temp != -INF) {
223                 ans = std::max(ans, temp + node[i].val - Sum[node[i].y]);
224             }
225             temp = ask2(node[i].y);
226             if(temp != -INF) {
227                 ans = std::max(ans, temp + node[i].val);
228             }
229             Add(node[i].x, node[i].val + Sum[node[i].x]);
230             Add2(node[i].y, node[i].val + Sum[node[i].x] - Sum[node[i].y]);
231         }
232         if(ans == -INF) puts("F");
233         else {
234             printf("%lld\n", ans);
235         }
236         clear();
237         return;
238     }
239 }
240 /*
241 50
242 2
243 1 2 914572059
244 3
245 1 2 213930211
246 1 2 0
247 2 2 0
248 */
249 inline void solve() {
250 
251     sum[1] = tag[1] = 0;
252 
253     scanf("%d", &n);
254     LL z;
255     bool FLAG = 1;
256     for(int i = 1, x, y; i < n; i++) {
257         scanf("%d%d%lld", &x, &y, &z);
258         add(x, y, z);
259         add(y, x, z);
260         if(y != x + 1) {
261             FLAG = 0;
262         }
263     }
264 
265     DFS_1(1, 0);
266     DFS_2(1, 1);
267 
268     for(int i = 1; i <= n; i++) {
269         Sum[i] += Sum[i - 1];
270     }
271 
272     scanf("%d", &m);
273     for(int i = 1; i <= m; i++) {
274         scanf("%d%d%lld", &node[i].x, &node[i].y, &node[i].z);
275         if(node[i].x > node[i].y) std::swap(node[i].x, node[i].y);
276         else if(node[i].x == node[i].y) {
277             m--;
278             i--;
279         }
280         node[i].val = dis(node[i].x, node[i].y) - node[i].z;
281         //printf("node %d [%d %d] val = %lld \n", i, node[i].x, node[i].y, node[i].val);
282     }
283     // solve
284     if(FLAG) {
285         Line::solve();
286         return;
287     }
288 
289     if(m > 300) {
290         clear();
291         return;
292     }
293 
294     LL ans = -INF;
295     for(int i = 1; i < m; i++) {
296         Add(node[i].x, node[i].y);
297         for(int j = i + 1; j <= m; j++) {
298             /// choose i j
299             LL Val = ask(node[j].x, node[j].y);
300             //printf("Val = %lld \n", Val);
301             if(Val) {
302                 ans = std::max(ans, node[i].val + node[j].val - Val);
303             }
304         }
305         tag[1] = sum[1] = 0;
306     }
307     if(ans == -INF) {
308         puts("F");
309     }
310     else {
311         printf("%lld\n", ans);
312     }
313     clear();
314     return;
315 }
316 
317 int main() {
318 
319     int T;
320     scanf("%d", &T);
321     while(T--) solve();
322     return 0;
323 }
30分代碼

接下來還有c = 0的部分分:枚舉每條邊,統計全部過它的鏈中權值最大的兩條更新答案。拿線段樹合併實現。ui

  1 #include <bits/stdc++.h>
  2 
  3 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
  4 
  5 typedef long long LL;
  6 const int N = 100010;
  7 const LL INF = 9e18;
  8 
  9 struct Edge {
 10     int nex, v;
 11     LL len;
 12 }edge[N << 1]; int tp;
 13 
 14 struct Node {
 15     int x, y;
 16     LL z, val;
 17     inline bool operator < (const Node &w) const {
 18         if(x != w.x) return x < w.x;
 19         return y < w.y;
 20     }
 21 }node[N];
 22 
 23 int n, e[N], m, fa[N], deep[N];
 24 int num, pos[N], son[N], siz[N], top[N];
 25 LL Sum[N], sum[N << 2], d[N], tag[N << 2];
 26 
 27 inline void add(int x, int y, LL z) {
 28     tp++;
 29     edge[tp].v = y;
 30     edge[tp].len = z;
 31     edge[tp].nex = e[x];
 32     e[x] = tp;
 33     return;
 34 }
 35 
 36 void DFS_1(int x, int f) { /// get fa son siz d deep
 37     fa[x] = f;
 38     deep[x] = deep[f] + 1;
 39     siz[x] = 1;
 40     forson(x, i) {
 41         int y = edge[i].v;
 42         if(y == f) continue;
 43         d[y] = d[x] + edge[i].len;
 44         DFS_1(y, x);
 45         siz[x] += siz[y];
 46         if(siz[y] > siz[son[x]]) {
 47             son[x] = y;
 48         }
 49     }
 50     return;
 51 }
 52 
 53 void DFS_2(int x, int f) { /// get top id pos
 54     pos[x] = ++num;
 55     top[x] = f;
 56     Sum[num] = d[x] - d[fa[x]];
 57     if(son[x]) {
 58         DFS_2(son[x], f);
 59     }
 60     forson(x, i) {
 61         int y = edge[i].v;
 62         if(y == fa[x] || y == son[x]) continue;
 63         DFS_2(y, y);
 64     }
 65     return;
 66 }
 67 
 68 inline int lca(int x, int y) {
 69     while(top[x] != top[y]) {
 70         if(deep[top[x]] > deep[top[y]]) {
 71             x = fa[top[x]];
 72         }
 73         else {
 74             y = fa[top[y]];
 75         }
 76     }
 77     return deep[x] < deep[y] ? x : y;
 78 }
 79 
 80 inline LL dis(int x, int y) {
 81     return d[x] + d[y] - 2 * d[lca(x, y)];
 82 }
 83 
 84 inline void pushdown(int l, int r, int o) {
 85     if(tag[o] != -1) {
 86         if(tag[o] == 0) {
 87             sum[o << 1] = sum[o << 1 | 1] = 0;
 88         }
 89         else {
 90             int mid = (l + r) >> 1;
 91             sum[o << 1] = Sum[mid] - Sum[l - 1];
 92             sum[o << 1 | 1] = Sum[r] - Sum[mid];
 93         }
 94         tag[o << 1] = tag[o << 1 | 1] = tag[o];
 95         tag[o] = -1;
 96     }
 97     return;
 98 }
 99 
100 void Add(int L, int R, int l, int r, int o) {
101     if(L <= l && r <= R) {
102         sum[o] = Sum[r] - Sum[l - 1];
103         tag[o] = 1;
104         return;
105     }
106     int mid = (l + r) >> 1;
107     pushdown(l, r, o);
108     if(L <= mid) Add(L, R, l, mid, o << 1);
109     if(mid < R) Add(L, R, mid + 1, r, o << 1 | 1);
110     sum[o] = sum[o << 1] + sum[o << 1 | 1];
111     return;
112 }
113 
114 LL ask(int L, int R, int l, int r, int o) {
115     if(L <= l && r <= R) {
116         return sum[o];
117     }
118     int mid = (l + r) >> 1;
119     pushdown(l, r, o);
120     LL ans = 0;
121     if(L <= mid) {
122         ans += ask(L, R, l, mid, o << 1);
123     }
124     if(mid < R) {
125         ans += ask(L, R, mid + 1, r, o << 1 | 1);
126     }
127     return ans;
128 }
129 
130 inline void Add(int x, int y) {
131     while(top[x] != top[y]) {
132         if(deep[top[x]] > deep[top[y]]) {
133             std::swap(x, y);
134         }
135         Add(pos[top[y]], pos[y], 1, n, 1);
136         y = fa[top[y]];
137     }
138     if(deep[x] > deep[y]) std::swap(x, y);
139     if(x != y) Add(pos[x] + 1, pos[y], 1, n, 1);
140     return;
141 }
142 
143 inline LL ask(int x, int y) {
144     LL ans = 0;
145     while(top[x] != top[y]) {
146         if(deep[top[x]] > deep[top[y]]) {
147             std::swap(x, y);
148         }
149         ans += ask(pos[top[y]], pos[y], 1, n, 1);
150         y = fa[top[y]];
151     }
152     if(deep[x] > deep[y]) std::swap(x, y);
153     if(x != y) ans += ask(pos[x] + 1, pos[y], 1, n, 1);
154     return ans;
155 }
156 
157 inline void clear() {
158     memset(e + 1, 0, n * sizeof(int));
159     memset(son + 1, 0, n * sizeof(int));
160     tp = 0;
161     num = 0;
162     return;
163 }
164 /*
165 1
166 5
167 1 2 1
168 2 3 3
169 3 4 3
170 1 5 9
171 2
172 1 5 5
173 2 3 8
174 */
175 
176 namespace Line {
177     LL ta[N], ta2[N];
178     inline LL ask(int i) {
179         LL ans = -INF;
180         for(; i; i -= i & (-i)) {
181             ans = std::max(ans, ta[i]);
182         }
183         return ans;
184     }
185     inline void Add(int i, LL v) {
186         for(; i <= n; i += i & (-i)) {
187             ta[i] = std::max(ta[i], v);
188         }
189         return;
190     }
191     inline LL ask2(int i) {
192         LL ans = -INF;
193         for(; i; i -= i & (-i)) {
194             ans = std::max(ans, ta2[i]);
195         }
196         return ans;
197     }
198     inline void Add2(int i, LL v) {
199         for(; i <= n; i += i & (-i)) {
200             ta2[i] = std::max(ta2[i], v);
201         }
202         return;
203     }
204     inline void solve() {
205         for(int i = 1; i <= n; i++) ta2[i] = ta[i] = -INF;
206         LL ans = -INF;
207         std::sort(node + 1, node + m + 1);
208         for(int i = m; i >= 1; i--) {
209             LL temp = ask(node[i].y - 1);
210             if(temp != -INF) {
211                 ans = std::max(ans, temp + node[i].val - Sum[node[i].y]);
212             }
213             temp = ask2(node[i].y);
214             if(temp != -INF) {
215                 ans = std::max(ans, temp + node[i].val);
216             }
217             Add(node[i].x, node[i].val + Sum[node[i].x]);
218             Add2(node[i].y, node[i].val + Sum[node[i].x] - Sum[node[i].y]);
219         }
220         if(ans == -INF) puts("F");
221         else {
222             printf("%lld\n", ans);
223         }
224         return;
225     }
226 }
227 
228 namespace C0 {
229     int rt[N], xx;
230     LL Ans, X[N];
231     std::vector<int> v[N];
232     namespace seg {
233         const int M = 20000010;
234         int ls[M], rs[M], tot, cnt[M];
235         LL sum[M];
236         void insert(int p, int v, int l, int r, int &o) {
237             if(!o) {
238                 o = ++tot;
239                 sum[o] = cnt[o] = ls[o] = rs[o] = 0;
240             }
241             if(l == r) {
242                 sum[o] += v * X[r];
243                 cnt[o] += v;
244                 return;
245             }
246             int mid = (l + r) >> 1;
247             if(p <= mid) {
248                 insert(p, v, l, mid, ls[o]);
249             }
250             else {
251                 insert(p, v, mid + 1, r, rs[o]);
252             }
253             sum[o] = sum[ls[o]] + sum[rs[o]];
254             cnt[o] = cnt[ls[o]] + cnt[rs[o]];
255             return;
256         }
257         LL ask(int k, int l, int r, int o) {
258             if(l == r) {
259                 return k * X[r];
260             }
261             int mid = (l + r) >> 1;
262             if(k <= cnt[rs[o]]) {
263                 return ask(k, mid + 1, r, rs[o]);
264             }
265             else {
266                 return ask(k - cnt[rs[o]], l, mid, ls[o]) + sum[rs[o]];
267             }
268         }
269         inline LL Ask(int x) {
270             if(cnt[rt[x]] < 2) return -INF;
271             return ask(2, 1, xx, rt[x]);
272         }
273         int merge(int x, int y) {
274             if(!x || !y) return x | y;
275             sum[x] += sum[y];
276             cnt[x] += cnt[y];
277             ls[x] = merge(ls[x], ls[y]);
278             rs[x] = merge(rs[x], rs[y]);
279             return x;
280         }
281         inline void Merge(int x, int y) {
282             rt[x] = merge(rt[x], rt[y]);
283             return;
284         }
285     }
286     void DFS(int x, int f) {
287         forson(x, i) {
288             int y = edge[i].v;
289             if(y == f) continue;
290             DFS(y, x);
291             Ans = std::max(Ans, seg::Ask(y));
292             seg::Merge(x, y);
293         }
294         for(int i = 0; i < (int)v[x].size(); i++) {
295             int t = v[x][i];
296             if(t > 0) {
297                 seg::insert(t, 1, 1, xx, rt[x]);
298             }
299             else {
300                 seg::insert(-t, -1, 1, xx, rt[x]);
301             }
302         }
303         return;
304     }
305     inline void solve() {
306         memset(rt + 1, 0, n * sizeof(int));
307         seg::tot = 0;
308         Ans = -INF;
309         for(int i = 1; i <= n; i++) v[i].clear();
310         for(int i = 1; i <= m; i++) {
311             X[i] = node[i].val;
312         }
313         std::sort(X + 1, X + m + 1);
314         xx = std::unique(X + 1, X + m + 1) - X - 1;
315         for(int i = 1; i <= m; i++) {
316             int val = std::lower_bound(X + 1, X + xx + 1, node[i].val) - X;
317             int x = node[i].x, y = node[i].y, z = lca(node[i].x, node[i].y);
318             v[x].push_back(val);
319             v[y].push_back(val);
320             v[z].push_back(-val);
321             v[z].push_back(-val);
322         }
323         DFS(1, 0);
324         if(Ans == -INF) puts("F");
325         else printf("%lld\n", Ans);
326         return;
327     }
328 }
329 
330 /*
331 50
332 2
333 1 2 914572059
334 3
335 1 2 213930211
336 1 2 0
337 2 2 0
338 */
339 inline void solve() {
340 
341     sum[1] = tag[1] = 0;
342 
343     scanf("%d", &n);
344     LL z;
345     bool FLAG = 1, c0 = 1;
346     for(int i = 1, x, y; i < n; i++) {
347         scanf("%d%d%lld", &x, &y, &z);
348         add(x, y, z);
349         add(y, x, z);
350         if(z) c0 = 0;
351         if(y != x + 1) {
352             FLAG = 0;
353         }
354     }
355 
356     DFS_1(1, 0);
357     DFS_2(1, 1);
358 
359     for(int i = 1; i <= n; i++) {
360         Sum[i] += Sum[i - 1];
361     }
362 
363     scanf("%d", &m);
364     for(int i = 1; i <= m; i++) {
365         scanf("%d%d%lld", &node[i].x, &node[i].y, &node[i].z);
366         if(node[i].x > node[i].y) std::swap(node[i].x, node[i].y);
367         else if(node[i].x == node[i].y) {
368             m--;
369             i--;
370         }
371         node[i].val = dis(node[i].x, node[i].y) - node[i].z;
372         //printf("node %d [%d %d] val = %lld \n", i, node[i].x, node[i].y, node[i].val);
373     }
374     // solve
375     if(FLAG) {
376         Line::solve();
377         clear();
378         return;
379     }
380     if(c0) {
381         C0::solve();
382         clear();
383         return;
384     }
385 
386     if(m > 300) {
387         clear();
388         return;
389     }
390 
391     LL ans = -INF;
392     for(int i = 1; i < m; i++) {
393         Add(node[i].x, node[i].y);
394         for(int j = i + 1; j <= m; j++) {
395             /// choose i j
396             LL Val = ask(node[j].x, node[j].y);
397             //printf("Val = %lld \n", Val);
398             if(Val) {
399                 ans = std::max(ans, node[i].val + node[j].val - Val);
400             }
401         }
402         tag[1] = sum[1] = 0;
403     }
404     if(ans == -INF) {
405         puts("F");
406     }
407     else {
408         printf("%lld\n", ans);
409     }
410     clear();
411     return;
412 }
413 
414 int main() {
415 
416     int T;
417     scanf("%d", &T);
418     while(T--) solve();
419     return 0;
420 }
45分代碼

接下來是這個東西...this

然而我只獲得了20分...可能比較醜。spa

只枚舉有公共部分的鏈:考慮枚舉每條邊,並m2枚舉通過這條邊的鏈。3d

這樣兩條鏈可能會在多條邊上算屢次,因而咱們限定某一個鏈的lca是這條邊的上端點。

具體一點,線段樹合併搞出通過每條邊的鏈,而後枚舉以這條邊爲lca的鏈,預處理樹上距離。而後枚舉通過這條邊的全部鏈,並更新答案。

其實能夠O(1)lca和長鏈剖分O(1)k級祖先來優化,可是我已經寫不動啦......

  1 /**
  2  * There is no end though there is a start in space. ---Infinity.
  3  * It has own power, it ruins, and it goes though there is a start also in the star. ---Finite.
  4  * Only the person who was wisdom can read the most foolish one from the history.
  5  * The fish that lives in the sea doesn't know the world in the land.
  6  * It also ruins and goes if they have wisdom.
  7  * It is funnier that man exceeds the speed of light than fish start living in the land.
  8  * It can be said that this is an final ultimatum from the god to the people who can fight.
  9  *
 10  * Steins;Gate
 11  */
 12 
 13 #include <bits/stdc++.h>
 14 
 15 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
 16 
 17 typedef long long LL;
 18 const int N = 100010, M = 20000010;
 19 const LL INF = 9e18;
 20 
 21 struct Edge {
 22     int nex, v;
 23     LL len;
 24     bool vis;
 25 }edge[N << 1]; int tp = 1;
 26 
 27 struct Node {
 28     int x, y;
 29     LL z, val;
 30     inline bool operator < (const Node &w) const {
 31         if(x != w.x) return x < w.x;
 32         return y < w.y;
 33     }
 34 }node[N];
 35 
 36 int n, e[N], m, fa[N], deep[N], ls[M], rs[M], tot;
 37 int num, pos[N], son[N], siz[N], top[N], rt[N], pw[N];
 38 LL Sum[N], sum[N << 2], d[N], tag[N << 2];
 39 
 40 inline void add(int x, int y, LL z) {
 41     tp++;
 42     edge[tp].v = y;
 43     edge[tp].len = z;
 44     edge[tp].vis = 0;
 45     edge[tp].nex = e[x];
 46     e[x] = tp;
 47     return;
 48 }
 49 
 50 void DFS_1(int x, int f) { /// get fa son siz d deep
 51     fa[x] = f;
 52     deep[x] = deep[f] + 1;
 53     siz[x] = 1;
 54     forson(x, i) {
 55         int y = edge[i].v;
 56         if(y == f) continue;
 57         d[y] = d[x] + edge[i].len;
 58         DFS_1(y, x);
 59         siz[x] += siz[y];
 60         if(siz[y] > siz[son[x]]) {
 61             son[x] = y;
 62         }
 63     }
 64     return;
 65 }
 66 
 67 void DFS_2(int x, int f) { /// get top id pos
 68     pos[x] = ++num;
 69     top[x] = f;
 70     Sum[num] = d[x] - d[fa[x]];
 71     if(son[x]) {
 72         DFS_2(son[x], f);
 73     }
 74     forson(x, i) {
 75         int y = edge[i].v;
 76         if(y == fa[x] || y == son[x]) continue;
 77         DFS_2(y, y);
 78     }
 79     return;
 80 }
 81 
 82 inline int lca(int x, int y) {
 83     while(top[x] != top[y]) {
 84         if(deep[top[x]] > deep[top[y]]) {
 85             x = fa[top[x]];
 86         }
 87         else {
 88             y = fa[top[y]];
 89         }
 90     }
 91     return deep[x] < deep[y] ? x : y;
 92 }
 93 
 94 inline LL dis(int x, int y) {
 95     return d[x] + d[y] - 2 * d[lca(x, y)];
 96 }
 97 
 98 inline void pushdown(int l, int r, int o) {
 99     if(tag[o] != -1) {
100         if(tag[o] == 0) {
101             sum[o << 1] = sum[o << 1 | 1] = 0;
102         }
103         else {
104             int mid = (l + r) >> 1;
105             sum[o << 1] = Sum[mid] - Sum[l - 1];
106             sum[o << 1 | 1] = Sum[r] - Sum[mid];
107         }
108         tag[o << 1] = tag[o << 1 | 1] = tag[o];
109         tag[o] = -1;
110     }
111     return;
112 }
113 
114 void Add(int L, int R, int l, int r, int o) {
115     if(L <= l && r <= R) {
116         sum[o] = Sum[r] - Sum[l - 1];
117         tag[o] = 1;
118         return;
119     }
120     int mid = (l + r) >> 1;
121     pushdown(l, r, o);
122     if(L <= mid) Add(L, R, l, mid, o << 1);
123     if(mid < R) Add(L, R, mid + 1, r, o << 1 | 1);
124     sum[o] = sum[o << 1] + sum[o << 1 | 1];
125     return;
126 }
127 
128 LL ask(int L, int R, int l, int r, int o) {
129     if(L <= l && r <= R) {
130         return sum[o];
131     }
132     int mid = (l + r) >> 1;
133     pushdown(l, r, o);
134     LL ans = 0;
135     if(L <= mid) {
136         ans += ask(L, R, l, mid, o << 1);
137     }
138     if(mid < R) {
139         ans += ask(L, R, mid + 1, r, o << 1 | 1);
140     }
141     return ans;
142 }
143 
144 inline void Add(int x, int y) {
145     while(top[x] != top[y]) {
146         if(deep[top[x]] > deep[top[y]]) {
147             std::swap(x, y);
148         }
149         Add(pos[top[y]], pos[y], 1, n, 1);
150         y = fa[top[y]];
151     }
152     if(deep[x] > deep[y]) std::swap(x, y);
153     if(x != y) Add(pos[x] + 1, pos[y], 1, n, 1);
154     return;
155 }
156 
157 inline LL ask(int x, int y) {
158     LL ans = 0;
159     while(top[x] != top[y]) {
160         if(deep[top[x]] > deep[top[y]]) {
161             std::swap(x, y);
162         }
163         ans += ask(pos[top[y]], pos[y], 1, n, 1);
164         y = fa[top[y]];
165     }
166     if(deep[x] > deep[y]) std::swap(x, y);
167     if(x != y) ans += ask(pos[x] + 1, pos[y], 1, n, 1);
168     return ans;
169 }
170 
171 inline void clear() {
172     memset(e + 1, 0, n * sizeof(int));
173     memset(son + 1, 0, n * sizeof(int));
174     tp = 1;
175     num = 0;
176     return;
177 }
178 /*
179 1
180 5
181 1 2 1
182 2 3 3
183 3 4 3
184 1 5 9
185 2
186 1 5 5
187 2 3 8
188 */
189 
190 namespace Line {
191     LL ta[N], ta2[N];
192     inline LL ask(int i) {
193         LL ans = -INF;
194         for(; i; i -= i & (-i)) {
195             ans = std::max(ans, ta[i]);
196         }
197         return ans;
198     }
199     inline void Add(int i, LL v) {
200         for(; i <= n; i += i & (-i)) {
201             ta[i] = std::max(ta[i], v);
202         }
203         return;
204     }
205     inline LL ask2(int i) {
206         LL ans = -INF;
207         for(; i; i -= i & (-i)) {
208             ans = std::max(ans, ta2[i]);
209         }
210         return ans;
211     }
212     inline void Add2(int i, LL v) {
213         for(; i <= n; i += i & (-i)) {
214             ta2[i] = std::max(ta2[i], v);
215         }
216         return;
217     }
218     inline void solve() {
219         for(int i = 1; i <= n; i++) ta2[i] = ta[i] = -INF;
220         LL ans = -INF;
221         std::sort(node + 1, node + m + 1);
222         for(int i = m; i >= 1; i--) {
223             LL temp = ask(node[i].y - 1);
224             if(temp != -INF) {
225                 ans = std::max(ans, temp + node[i].val - Sum[node[i].y]);
226             }
227             temp = ask2(node[i].y);
228             if(temp != -INF) {
229                 ans = std::max(ans, temp + node[i].val);
230             }
231             Add(node[i].x, node[i].val + Sum[node[i].x]);
232             Add2(node[i].y, node[i].val + Sum[node[i].x] - Sum[node[i].y]);
233         }
234         if(ans == -INF) puts("F");
235         else {
236             printf("%lld\n", ans);
237         }
238         return;
239     }
240 }
241 
242 namespace C0 {
243     int xx;
244     LL Ans, X[N];
245     std::vector<int> v[N];
246     namespace seg {
247         int cnt[M];
248         LL sum[M];
249         void insert(int p, int v, int l, int r, int &o) {
250             if(!o) {
251                 o = ++tot;
252                 sum[o] = cnt[o] = ls[o] = rs[o] = 0;
253             }
254             if(l == r) {
255                 sum[o] += v * X[r];
256                 cnt[o] += v;
257                 return;
258             }
259             int mid = (l + r) >> 1;
260             if(p <= mid) {
261                 insert(p, v, l, mid, ls[o]);
262             }
263             else {
264                 insert(p, v, mid + 1, r, rs[o]);
265             }
266             sum[o] = sum[ls[o]] + sum[rs[o]];
267             cnt[o] = cnt[ls[o]] + cnt[rs[o]];
268             return;
269         }
270         LL ask(int k, int l, int r, int o) {
271             if(l == r) {
272                 return k * X[r];
273             }
274             int mid = (l + r) >> 1;
275             if(k <= cnt[rs[o]]) {
276                 return ask(k, mid + 1, r, rs[o]);
277             }
278             else {
279                 return ask(k - cnt[rs[o]], l, mid, ls[o]) + sum[rs[o]];
280             }
281         }
282         inline LL Ask(int x) {
283             if(cnt[rt[x]] < 2) return -INF;
284             return ask(2, 1, xx, rt[x]);
285         }
286         int merge(int x, int y) {
287             if(!x || !y) return x | y;
288             sum[x] += sum[y];
289             cnt[x] += cnt[y];
290             ls[x] = merge(ls[x], ls[y]);
291             rs[x] = merge(rs[x], rs[y]);
292             return x;
293         }
294         inline void Merge(int x, int y) {
295             rt[x] = merge(rt[x], rt[y]);
296             return;
297         }
298     }
299     void DFS(int x, int f) {
300         forson(x, i) {
301             int y = edge[i].v;
302             if(y == f) continue;
303             DFS(y, x);
304             Ans = std::max(Ans, seg::Ask(y));
305             seg::Merge(x, y);
306         }
307         for(int i = 0; i < (int)v[x].size(); i++) {
308             int t = v[x][i];
309             if(t > 0) {
310                 seg::insert(t, 1, 1, xx, rt[x]);
311             }
312             else {
313                 seg::insert(-t, -1, 1, xx, rt[x]);
314             }
315         }
316         return;
317     }
318     inline void solve() {
319         memset(rt + 1, 0, n * sizeof(int));
320         tot = 0;
321         Ans = -INF;
322         for(int i = 1; i <= n; i++) v[i].clear();
323         for(int i = 1; i <= m; i++) {
324             X[i] = node[i].val;
325         }
326         std::sort(X + 1, X + m + 1);
327         xx = std::unique(X + 1, X + m + 1) - X - 1;
328         for(int i = 1; i <= m; i++) {
329             int val = std::lower_bound(X + 1, X + xx + 1, node[i].val) - X;
330             int x = node[i].x, y = node[i].y, z = lca(node[i].x, node[i].y);
331             v[x].push_back(val);
332             v[y].push_back(val);
333             v[z].push_back(-val);
334             v[z].push_back(-val);
335         }
336         DFS(1, 0);
337         if(Ans == -INF) puts("F");
338         else printf("%lld\n", Ans);
339         return;
340     }
341 }
342 
343 namespace tbf {
344     LL d2[N], Ans;
345     int Top, stk[N], stk2[N], Top2, faa[N][20];
346     std::vector<int> vx[N], v[N];
347     LL dis2(int x, int y) {
348         return d2[x] + d2[y] - 2 * d2[lca(x, y)];
349     }
350     void DFS_3(int x, int f) { /// get dis2
351         forson(x, i) {
352             int y = edge[i].v;
353             if(y == f) continue;
354             d2[y] = d2[x] + edge[i].len * edge[i].vis;
355             DFS_3(y, x);
356         }
357         return;
358     }
359     bool DFS_4(int x, int f, int t) { /// visit a link
360         if(x == t) {
361             Top = 0;
362             return true;
363         }
364         forson(x, i) {
365             int y = edge[i].v;
366             if(y == f) {
367                 continue;
368             }
369             if(DFS_4(y, x, t)) {
370                 edge[i].vis = edge[i ^ 1].vis = 1;
371                 stk[++Top] = i;
372                 return true;
373             }
374         }
375         return false;
376     }
377     namespace seg {
378         int sum[M];
379         void insert(int p, int v, int l, int r, int &o) {
380             if(!o) {
381                 o = ++tot;
382                 ls[o] = rs[o] = sum[o] = 0;
383             }
384             if(l == r) {
385                 sum[o] += v;
386                 return;
387             }
388             int mid = (l + r) >> 1;
389             if(p <= mid) insert(p, v, l, mid, ls[o]);
390             else insert(p, v, mid + 1, r, rs[o]);
391             sum[o] = sum[ls[o]] + sum[rs[o]];
392             return;
393         }
394         void solve(int l, int r, int o) {
395             if(l == r) {
396                 stk2[++Top2] = r;
397                 return;
398             }
399             int mid = (l + r) >> 1;
400             if(sum[ls[o]]) {
401                 solve(l, mid, ls[o]);
402             }
403             if(sum[rs[o]]) {
404                 solve(mid + 1, r, rs[o]);
405             }
406             return;
407         }
408         int merge(int x, int y) {
409             if(!x || !y) return x | y;
410             sum[x] += sum[y];
411             ls[x] = merge(ls[x], ls[y]);
412             rs[x] = merge(rs[x], rs[y]);
413             return x;
414         }
415     }
416 
417     void DFS_5(int x, int f) {
418         forson(x, i) {
419             int y = edge[i].v;
420             if(y == f) continue;
421             DFS_5(y, x);
422             Top2 = 0;
423             seg::solve(1, m, rt[y]);
424             for(int j = 0; j < (int)vx[y].size(); j++) {
425                 int z = vx[y][j];
426                 /// link z
427                 DFS_4(node[z].x, 0, node[z].y);
428                 DFS_3(1, 0);
429                 for(int k = 1; k <= Top2; k++) {
430                     int w = stk2[k]; /// link w
431                     if(w == z) continue;
432                     Ans = std::max(Ans, node[z].val + node[w].val - dis2(node[w].x, node[w].y));
433                 }
434                 while(Top) {
435                     edge[stk[Top]].vis = edge[stk[Top] ^ 1].vis = 0;
436                     Top--;
437                 }
438             }
439             rt[x] = seg::merge(rt[x], rt[y]);
440         }
441         /// insert
442         for(int i = 0; i < (int)v[x].size(); i++) {
443             int t = v[x][i];
444             if(t > 0) {
445                 seg::insert(t, 1, 1, m, rt[x]);
446             }
447             else {
448                 seg::insert(-t, -1, 1, m, rt[x]);
449             }
450         }
451         return;
452     }
453     void DFS_6(int x, int f) {
454         faa[x][0] = f;
455         forson(x, i) {
456             int y = edge[i].v;
457             if(y == f) continue;
458             DFS_6(y, x);
459         }
460         return;
461     }
462     inline void prework() {
463         for(int j = 1; j <= pw[n]; j++) {
464             for(int i = 1; i <= n; i++) {
465                 faa[i][j] = faa[faa[i][j - 1]][j - 1];
466             }
467         }
468         return;
469     }
470     inline int Find(int x, int z) {
471         int t = pw[n];
472         while(t >= 0 && fa[x] != z) {
473             if(deep[faa[x][t]] > deep[z]) {
474                 x = faa[x][t];
475             }
476             t--;
477         }
478         return x;
479     }
480     inline void solve() {
481         tot = 0;
482         Ans = -INF;
483         memset(rt + 1, 0, n * sizeof(int));
484         for(int i = 1; i <= n; i++) {
485             v[i].clear();
486             vx[i].clear();
487         }
488         DFS_6(1, 0);
489         prework();
490         for(int i = 1; i <= m; i++) {
491             int x = node[i].x, y = node[i].y, z = lca(x, y);
492             v[x].push_back(i);
493             v[y].push_back(i);
494             v[z].push_back(-i);
495             v[z].push_back(-i);
496             if(x != z) {
497                 int xx = Find(x, z);
498                 vx[xx].push_back(i);
499             }
500             if(y != z) {
501                 int yy = Find(y, z);
502                 vx[yy].push_back(i);
503             }
504         }
505         DFS_5(1, 0);
506         if(Ans == -INF) puts("F");
507         else printf("%lld\n", Ans);
508         return;
509     }
510 } /** namespace tbf */
511 
512 inline void solve() {
513 
514     sum[1] = tag[1] = 0;
515 
516     scanf("%d", &n);
517     LL z;
518     bool FLAG = 1, c0 = 1;
519     for(int i = 1, x, y; i < n; i++) {
520         scanf("%d%d%lld", &x, &y, &z);
521         add(x, y, z);
522         add(y, x, z);
523         if(z) c0 = 0;
524         if(y != x + 1) {
525             FLAG = 0;
526         }
527     }
528 
529     DFS_1(1, 0);
530     DFS_2(1, 1);
531 
532     for(int i = 1; i <= n; i++) {
533         Sum[i] += Sum[i - 1];
534     }
535 
536     scanf("%d", &m);
537     for(int i = 1; i <= m; i++) {
538         scanf("%d%d%lld", &node[i].x, &node[i].y, &node[i].z);
539         if(node[i].x > node[i].y) std::swap(node[i].x, node[i].y);
540         else if(node[i].x == node[i].y) {
541             m--;
542             i--;
543         }
544         node[i].val = dis(node[i].x, node[i].y) - node[i].z;
545         //printf("node %d [%d %d] val = %lld \n", i, node[i].x, node[i].y, node[i].val);
546     }
547     // solve
548 
549     tbf::solve();
550     clear();
551     return;
552 
553     if(FLAG) {
554         Line::solve();
555         clear();
556         return;
557     }
558     if(c0) {
559         C0::solve();
560         clear();
561         return;
562     }
563 
564     if(m > 300) {
565         tbf::solve();
566         clear();
567         return;
568     }
569 
570     LL ans = -INF;
571     for(int i = 1; i < m; i++) {
572         Add(node[i].x, node[i].y);
573         for(int j = i + 1; j <= m; j++) {
574             /// choose i j
575             LL Val = ask(node[j].x, node[j].y);
576             //printf("Val = %lld \n", Val);
577             if(Val) {
578                 ans = std::max(ans, node[i].val + node[j].val - Val);
579             }
580         }
581         tag[1] = sum[1] = 0;
582     }
583     if(ans == -INF) {
584         puts("F");
585     }
586     else {
587         printf("%lld\n", ans);
588     }
589     clear();
590     return;
591 }
592 
593 int main() {
594 
595     for(int i = 2; i < N; i++) pw[i] = pw[i >> 1] + 1;
596 
597     int T;
598     scanf("%d", &T);
599     while(T--) solve();
600     return 0;
601 }
20分真暴力代碼

接下來是S1的部分分:全部lca所有不一樣。

實際上(參考yww的代碼)咱們要維護兩個東西,一個是val最大值,一個是val + d[lca]的最大值。而後更新的時候,把線段樹交錯更新。

也就是說左兒子(較淺)的val + 右兒子(較深)的(val + d[lca])而後減去紅點的深度。

而後咱們要在插入和merge的同時更新。注意到咱們還有一個刪除操做,x子樹搞完以後,深度大於等於x的所有失效,也就是咱們要把線段樹右邊的一段所有清除。

DFS那裏插入刪除merge的順序很是重要....反正我試了好久才搞對順序。

  1 #include <bits/stdc++.h>
  2 
  3 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
  4 
  5 typedef long long LL;
  6 const int N = 100010;
  7 const LL INF = 4e18;
  8 
  9 struct Edge {
 10     int nex, v;
 11     LL len;
 12 }edge[N << 1]; int tp = 1;
 13 
 14 struct Node {
 15     int x, y, w;
 16     LL val, z;
 17 }node[N];
 18 
 19 int e[N], num2, pos2[N], ST[N][20], pw[N], deep[N], n, m, fa[N];
 20 LL d[N];
 21 std::bitset<N> visLca;
 22 
 23 inline void add(int x, int y, LL z) {
 24     tp++;
 25     edge[tp].v = y;
 26     edge[tp].len = z;
 27     edge[tp].nex = e[x];
 28     e[x] = tp;
 29     return;
 30 }
 31 
 32 inline void clear() {
 33     memset(e + 1, 0, n * sizeof(int));
 34     visLca.reset();
 35     tp = 1;
 36     num2 = 0;
 37     return;
 38 }
 39 
 40 void DFS(int x, int f) {
 41     pos2[x] = ++num2;
 42     ST[num2][0] = x;
 43     deep[x] = deep[f] + 1;
 44     fa[x] = f;
 45     forson(x, i) {
 46         int y = edge[i].v;
 47         if(y == f) {
 48             continue;
 49         }
 50         d[y] = d[x] + edge[i].len;
 51         DFS(y, x);
 52         ST[++num2][0] = x;
 53     }
 54     return;
 55 }
 56 
 57 inline void prework() {
 58     for(int j = 1; j <= pw[num2]; j++) {
 59         for(int i = 1; i + (1 << j) - 1 <= num2; i++) {
 60             if(deep[ST[i][j - 1]] < deep[ST[i + (1 << (j - 1))][j - 1]]) {
 61                 ST[i][j] = ST[i][j - 1];
 62             }
 63             else {
 64                 ST[i][j] = ST[i + (1 << (j - 1))][j - 1];
 65             }
 66         }
 67     }
 68     return;
 69 }
 70 
 71 inline int lca(int x, int y) {
 72     x = pos2[x];
 73     y = pos2[y];
 74     if(x > y) std::swap(x, y);
 75     int t = pw[y - x + 1];
 76     if(deep[ST[x][t]] < deep[ST[y - (1 << t) + 1][t]]) {
 77         return ST[x][t];
 78     }
 79     else {
 80         return ST[y - (1 << t) + 1][t];
 81     }
 82 }
 83 
 84 inline LL dis(int x, int y) {
 85     return d[x] + d[y] - 2 * d[lca(x, y)];
 86 }
 87 
 88 namespace Sone { /// lca != lca
 89     LL Ans;
 90     int rt[N];
 91     std::vector<int> v[N];
 92     namespace seg {
 93         const int M = 10000010;
 94 
 95         int ls[M], rs[M], tot;
 96         LL large[M], largeD[M];
 97 
 98         inline void pushup(int o) {
 99             large[o] = std::max(large[ls[o]], large[rs[o]]);
100             largeD[o] = std::max(largeD[ls[o]], largeD[rs[o]]);
101             return;
102         }
103         void insert(int p, LL v, LL v2, LL v3, int l, int r, int &o) {
104             if(!o) {
105                 o = ++tot;
106                 ls[o] = rs[o] = 0;
107                 large[o] = largeD[o] = -INF;
108             }
109             if(l == r) {
110                 large[o] = std::max(large[o], v);
111                 largeD[o] = std::max(largeD[o], v + v2);
112                 return;
113             }
114             int mid = (l + r) >> 1;
115             if(p <= mid) {
116                 Ans = std::max(Ans, largeD[rs[o]] + v - v3);
117                 insert(p, v, v2, v3, l, mid, ls[o]);
118             }
119             else {
120                 Ans = std::max(Ans, large[ls[o]] + v + v2 - v3);
121                 insert(p, v, v2, v3, mid + 1, r, rs[o]);
122             }
123             pushup(o);
124             return;
125         }
126         int merge(int x, int y, LL v) {
127             //printf("merge x = %d y = %d v = %lld \n", x, y, v);
128             if(!x || !y) return x | y;
129             Ans = std::max(Ans, std::max(large[ls[x]] + largeD[rs[y]], large[ls[y]] + largeD[rs[x]]) - v);
130             large[x] = std::max(large[x], large[y]);
131             largeD[x] = std::max(largeD[x], largeD[y]);
132             ls[x] = merge(ls[x], ls[y], v);
133             rs[x] = merge(rs[x], rs[y], v);
134             return x;
135         }
136         void del(int p, int l, int r, int o) {
137             if(!o) {
138                 return;
139             }
140             if(l == r) {
141                 large[o] = largeD[o] = -INF;
142                 return;
143             }
144             int mid = (l + r) >> 1;
145             if(p <= mid) {
146                 large[rs[o]] = largeD[rs[o]] = -INF;
147                 del(p, l, mid, ls[o]);
148             }
149             else {
150                 del(p, mid + 1, r, rs[o]);
151             }
152             pushup(o);
153             return;
154         }
155     }
156 
157     void DFS_1(int x, int f) {
158         //printf("x = %d \n", x);
159         for(int i = 0; i < (int)v[x].size(); i++) {
160             int t = v[x][i];
161             //printf("x = %d insert p = %d w = %d  v1 = %lld  v2 = %lld \n", x, deep[node[t].w], node[t].w, node[t].val, d[node[t].w]);
162             seg::insert(deep[node[t].w], node[t].val, d[node[t].w], d[x], 1, n, rt[x]);
163         }
164         forson(x, i) {
165             int y = edge[i].v;
166             if(y == f) continue;
167             //printf("y = %d \n", y);
168             DFS_1(y, x);
169             //printf("merge %d -> %d \n", x, y);
170             seg::del(deep[x], 1, n, rt[y]);
171             rt[x] = seg::merge(rt[x], rt[y], d[x]);
172             //printf("Ans = %lld \n", Ans);
173         }
174         return;
175     }
176 
177     inline void solve() {
178         seg::tot = 0;
179         seg::large[0] = seg::largeD[0] = -INF;
180         Ans = -INF;
181         memset(rt + 1, 0, n * sizeof(int));
182         for(int i = 1; i <= n; i++) v[i].clear();
183 
184         for(int i = 1; i <= m; i++) {
185             int x = node[i].x, y = node[i].y, z = node[i].w;
186             if(x != z) {
187                 v[x].push_back(i);
188             }
189             if(y != z) {
190                 v[y].push_back(i);
191             }
192         }
193 
194         DFS_1(1, 0);
195         if(Ans < (LL)(-3e18)) puts("F");
196         else printf("%lld\n", Ans);
197         return;
198     }
199 }
200 
201 namespace Stwo { /// lca = 1
202     inline void solve() {
203 
204         return;
205     }
206 }
207 
208 inline void solve() {
209     scanf("%d", &n);
210     LL z;
211     for(int i = 1, x, y; i < n; i++) {
212         scanf("%d%d%lld", &x, &y, &z);
213         add(x, y, z);
214         add(y, x, z);
215     }
216 
217     DFS(1, 0);
218     prework();
219 
220     scanf("%d", &m);
221     bool S1 = true, S2 = true;
222     int lastLca = -1;
223     for(int i = 1, x, y; i <= m; i++) {
224         scanf("%d%d%lld", &x, &y, &z);
225         node[i].x = x;
226         node[i].y = y;
227         node[i].z = z;
228         node[i].val = dis(x, y) - z;
229         int temp = lca(x, y);
230         if(lastLca == -1) lastLca = temp;
231         else if(lastLca != temp) S2 = false;
232         if(visLca[temp]) S1 = false;
233         else visLca.set(temp);
234         node[i].w = temp;
235     }
236 
237     if(S1) {
238         Sone::solve();
239         return;
240     }
241     if(S2) {
242         Stwo::solve();
243         return;
244     }
245 
246     return;
247 }
248 
249 int main() {
250 
251     freopen("in.in", "r", stdin);
252     freopen("my.out", "w", stdout);
253 
254     for(int i = 2; i < N; i++) pw[i] = pw[i >> 1] + 1;
255 
256     int T;
257     scanf("%d", &T);
258     while(T--) {
259         solve();
260         if(T) clear();
261     }
262     return 0;
263 }
15分S1代碼

接下來是S2的lca所有爲1的部分分。

繼續抄題解。

個人理解是,首先把2 * 總價值轉化成鏈長之和 - 代價之和 + 藍點距離 + 綠點距離。咱們嘗試新建兩個點來表示出這個東西。

首先把藍點距離轉化成藍a深度 + 藍b深度 - 2 * 紅點深度。

對於一條鏈a,咱們在綠a處掛上一個節點綠a',使得它到綠a的距離爲鏈長 - 代價 + 藍a深度。

而後咱們發現,這樣兩個附加點的距離正好湊出了上面那個2 * 總價值,只要再減去2 * 紅點深度就好了。

有這個結論是由於邊權非負。那麼咱們新加的邊不是有一堆負權嗎?爲何成立呢?

由於咱們能夠給這些新加的邊(僞裝加上了)加上一個很大的正值來達到非負。爲何這個方法在通常的樹上不適用呢?由於咱們不知道直徑上有多少條邊加了這個大正值。可是本題中會有恰兩條邊加上這個正值。

因此作法就出來了。具體來講,咱們DFS這棵樹,而後在每一個藍a處把綠a'加入點集,同理在綠a處把藍a'加入點集。

而後合併點集的同時更新答案。注意當前點爲根的時候不能更新,由於可能會把藍a'和綠a'的距離算入答案。也不必更新,由於根不可能做爲紅點。

注意只須要掛可能成爲藍a的對應的綠a',就是說一條鏈直上直下的時候有一個點不用加。

  1 #include <bits/stdc++.h>
  2 
  3 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
  4 
  5 using namespace std;
  6 
  7 typedef long long LL;
  8 const int N = 300010;
  9 const LL INF = 4e18;
 10 
 11 struct Edge {
 12     int nex, v;
 13     LL len;
 14 }edge[N << 1]; int tp = 1;
 15 
 16 struct Node {
 17     int x, y, w;
 18     LL val, z;
 19 }node[N];
 20 
 21 struct Data {
 22     int a, b;
 23     Data(int A = 0, int B = 0) : a(A), b(B) {}
 24 }data[N];
 25 
 26 int e[N], num2, pos2[N], ST[N][20], pw[N], deep[N], n, m, fa[N], fr[N];
 27 LL d[N];
 28 std::bitset<N> visLca;
 29 
 30 inline void add(int x, int y, LL z) {
 31     tp++;
 32     edge[tp].v = y;
 33     edge[tp].len = z;
 34     edge[tp].nex = e[x];
 35     e[x] = tp;
 36     return;
 37 }
 38 
 39 inline void clear() {
 40     memset(e + 1, 0, n * sizeof(int));
 41     visLca.reset();
 42     tp = 1;
 43     num2 = 0;
 44     return;
 45 }
 46 
 47 void DFS(int x, int f) {
 48     pos2[x] = ++num2;
 49     ST[num2][0] = x;
 50     deep[x] = deep[f] + 1;
 51     fa[x] = f;
 52     forson(x, i) {
 53         int y = edge[i].v;
 54         if(y == f) {
 55             continue;
 56         }
 57         d[y] = d[x] + edge[i].len;
 58         DFS(y, x);
 59         ST[++num2][0] = x;
 60     }
 61     return;
 62 }
 63 
 64 inline void prework() {
 65     for(int j = 1; j <= pw[num2]; j++) {
 66         for(int i = 1; i + (1 << j) - 1 <= num2; i++) {
 67             if(deep[ST[i][j - 1]] < deep[ST[i + (1 << (j - 1))][j - 1]]) {
 68                 ST[i][j] = ST[i][j - 1];
 69             }
 70             else {
 71                 ST[i][j] = ST[i + (1 << (j - 1))][j - 1];
 72             }
 73         }
 74     }
 75     return;
 76 }
 77 
 78 inline int lca(int x, int y) {
 79     x = pos2[fr[x]];
 80     y = pos2[fr[y]];
 81     if(x > y) std::swap(x, y);
 82     int t = pw[y - x + 1];
 83     if(deep[ST[x][t]] < deep[ST[y - (1 << t) + 1][t]]) {
 84         return ST[x][t];
 85     }
 86     else {
 87         return ST[y - (1 << t) + 1][t];
 88     }
 89 }
 90 
 91 inline LL dis(int x, int y) {
 92     if(!x || !y) return -INF;
 93     if(x > n && (x - n + 1) / 2 == (y - n + 1) / 2) return -INF;
 94     //if(x > n) printf("dis %d %d = %lld \n", x, y, d[x] + d[y] - 2 * d[lca(x, y)]);
 95     return d[x] + d[y] - 2 * d[lca(x, y)];
 96 }
 97 
 98 namespace Sone { /// lca != lca
 99     LL Ans;
100     int rt[N];
101     std::vector<int> v[N];
102     namespace seg {
103         const int M = 10000010;
104 
105         int ls[M], rs[M], tot;
106         LL large[M], largeD[M];
107 
108         inline void pushup(int o) {
109             large[o] = std::max(large[ls[o]], large[rs[o]]);
110             largeD[o] = std::max(largeD[ls[o]], largeD[rs[o]]);
111             return;
112         }
113         void insert(int p, LL v, LL v2, LL v3, int l, int r, int &o) {
114             if(!o) {
115                 o = ++tot;
116                 ls[o] = rs[o] = 0;
117                 large[o] = largeD[o] = -INF;
118             }
119             if(l == r) {
120                 large[o] = std::max(large[o], v);
121                 largeD[o] = std::max(largeD[o], v + v2);
122                 return;
123             }
124             int mid = (l + r) >> 1;
125             if(p <= mid) {
126                 Ans = std::max(Ans, largeD[rs[o]] + v - v3);
127                 insert(p, v, v2, v3, l, mid, ls[o]);
128             }
129             else {
130                 Ans = std::max(Ans, large[ls[o]] + v + v2 - v3);
131                 insert(p, v, v2, v3, mid + 1, r, rs[o]);
132             }
133             pushup(o);
134             return;
135         }
136         int merge(int x, int y, LL v) {
137             //printf("merge x = %d y = %d v = %lld \n", x, y, v);
138             if(!x || !y) return x | y;
139             Ans = std::max(Ans, std::max(large[ls[x]] + largeD[rs[y]], large[ls[y]] + largeD[rs[x]]) - v);
140             large[x] = std::max(large[x], large[y]);
141             largeD[x] = std::max(largeD[x], largeD[y]);
142             ls[x] = merge(ls[x], ls[y], v);
143             rs[x] = merge(rs[x], rs[y], v);
144             return x;
145         }
146         void del(int p, int l, int r, int o) {
147             if(!o) {
148                 return;
149             }
150             if(l == r) {
151                 large[o] = largeD[o] = -INF;
152                 return;
153             }
154             int mid = (l + r) >> 1;
155             if(p <= mid) {
156                 large[rs[o]] = largeD[rs[o]] = -INF;
157                 del(p, l, mid, ls[o]);
158             }
159             else {
160                 del(p, mid + 1, r, rs[o]);
161             }
162             pushup(o);
163             return;
164         }
165     }
166 
167     void DFS_1(int x, int f) {
168         //printf("x = %d \n", x);
169         for(int i = 0; i < (int)v[x].size(); i++) {
170             int t = v[x][i];
171             //printf("x = %d insert p = %d w = %d  v1 = %lld  v2 = %lld \n", x, deep[node[t].w], node[t].w, node[t].val, d[node[t].w]);
172             seg::insert(deep[node[t].w], node[t].val, d[node[t].w], d[x], 1, n, rt[x]);
173         }
174         forson(x, i) {
175             int y = edge[i].v;
176             if(y == f) continue;
177             //printf("y = %d \n", y);
178             DFS_1(y, x);
179             //printf("merge %d -> %d \n", x, y);
180             seg::del(deep[x], 1, n, rt[y]);
181             rt[x] = seg::merge(rt[x], rt[y], d[x]);
182             //printf("Ans = %lld \n", Ans);
183         }
184         return;
185     }
186 
187     inline void solve() {
188         seg::tot = 0;
189         seg::large[0] = seg::largeD[0] = -INF;
190         Ans = -INF;
191         memset(rt + 1, 0, n * sizeof(int));
192         for(int i = 1; i <= n; i++) v[i].clear();
193 
194         for(int i = 1; i <= m; i++) {
195             int x = node[i].x, y = node[i].y, z = node[i].w;
196             if(x != z) {
197                 v[x].push_back(i);
198             }
199             if(y != z) {
200                 v[y].push_back(i);
201             }
202         }
203 
204         DFS_1(1, 0);
205         if(Ans < (LL)(-3e18)) puts("F");
206         else printf("%lld\n", Ans);
207         return;
208     }
209 }
210 
211 namespace Stwo { /// lca = 1
212     /*Edge EDGE[N << 1]; int TP;
213     int E[N], use[N], Time, fr[N];
214     inline void ADD(int x, int y, LL z) {
215         TP++;
216         EDGE[TP].v = y;
217         EDGE[TP].len = z;
218         EDGE[TP].nex = E[x];
219         E[x] = TP;
220         return;
221     }
222     inline void work(int x) {
223         if(use[x] != Time) {
224             use[x] = Time;
225             E[x] = 0;
226             ? = ?;
227         }
228         return;
229     }*/
230     std::vector<int> v[N];
231     LL Ans;
232 
233     inline void update(Data &x, const Data &y, const LL &v) {
234         //printf("update v = %lld \n", v);
235         LL d12 = dis(x.a, x.b), d34 = dis(y.a, y.b);
236         LL d13 = dis(x.a, y.a), d14 = dis(x.a, y.b);
237         LL d23 = dis(x.b, y.a), d24 = dis(x.b, y.b);
238         Ans = std::max(Ans, std::max(std::max(d13, d14), std::max(d23, d24)) - v);
239         int xa = x.a, xb = x.b;
240         if(d34 > d12) {
241             x = y;
242             d12 = d34;
243         }
244         if(d13 > d12) {
245             x = Data(xa, y.a);
246             d12 = d13;
247         }
248         if(d14 > d12) {
249             x = Data(xa, y.b);
250             d12 = d14;
251         }
252         if(d23 > d12) {
253             x = Data(xb, y.a);
254             d12 = d23;
255         }
256         if(d24 > d12) {
257             x = Data(xb, y.b);
258         }
259         if(!x.a) x = y;
260         //printf("Ans = %lld \n", Ans);
261         return;
262     }
263 
264     inline void update(Data &x, const int &a, const LL &v) {
265         //printf("insert v = %lld \n", v);
266         LL d1 = dis(x.a, a), d2 = dis(x.b, a), d3 = dis(x.a, x.b);
267         Ans = std::max(Ans, std::max(d1, d2) - v);
268         int xa = x.a, xb = x.b;
269         if(d1 > d3) {
270             x.b = a;
271             d3 = d1;
272         }
273         if(d2 > d3) {
274             x = Data(xb, a);
275         }
276         if(!x.a) x.a = a;
277         //printf("Ans = %lld \n", Ans);
278         return;
279     }
280 
281     void DFS_1(int x, int f) {
282         forson(x, i) {
283             int y = edge[i].v;
284             if(y == f) continue;
285             DFS_1(y, x);
286             if(f) update(data[x], data[y], d[x] << 1);
287             //printf("data x : %d %d \n", data[x].a, data[x].b);
288         }
289         if(f) {
290             for(int i = 0; i < (int)v[x].size(); i++) {
291                 int t = v[x][i];
292                 update(data[x], t, d[x] << 1);
293             }
294         }
295         return;
296     }
297 
298     inline void solve() {
299 
300         //printf("S2 inside \n");
301 
302         for(int i = 1; i <= n; i++) {
303             v[i].clear();
304             v[i].resize(0);
305             data[i].a = data[i].b = 0;
306         }
307         Ans = -INF;
308         for(int i = 1; i <= m; i++) {
309             int x = node[i].x, y = node[i].y, z = node[i].w;
310             if(x != z) {
311                 fr[n + i * 2 - 1] = y;
312                 d[n + i * 2 - 1] = d[y] + d[x] + node[i].val - node[i].z;
313                 v[x].push_back(n + i * 2 - 1);
314                 //printf("%d : d = %lld fr = %d \n", n + i * 2 - 1, d[n + i * 2 - 1], fr[n + i * 2 - 1]);
315             }
316             if(y != z) {
317                 fr[n + i * 2] = x;
318                 d[n + i * 2] = d[x] + d[y] + node[i].val - node[i].z;
319                 v[y].push_back(n + i * 2);
320                 //printf("%d : d = %lld fr = %d \n", n + i * 2, d[n + i * 2], fr[n + i * 2]);
321             }
322         }
323         //puts("");
324         DFS_1(1, 0);
325 
326         if(Ans < (LL)-3e18) puts("F");
327         else printf("%lld\n", Ans >> 1);
328         return;
329     }
330 }
331 
332 inline void solve() {
333     scanf("%d", &n);
334     for(int i = 1; i <= n; i++) {
335         fr[i] = i;
336     }
337     LL z;
338     for(int i = 1, x, y; i < n; i++) {
339         scanf("%d%d%lld", &x, &y, &z);
340         add(x, y, z);
341         add(y, x, z);
342     }
343 
344     DFS(1, 0);
345     prework();
346 
347     scanf("%d", &m);
348     bool S1 = true, S2 = true;
349     int lastLca = -1;
350     for(int i = 1, x, y; i <= m; i++) {
351         scanf("%d%d%lld", &x, &y, &z);
352         node[i].x = x;
353         node[i].y = y;
354         node[i].z = z;
355         node[i].val = dis(x, y) - z;
356         int temp = lca(x, y);
357         if(lastLca == -1) lastLca = temp;
358         else if(lastLca != temp) S2 = false;
359         if(visLca[temp]) S1 = false;
360         else visLca.set(temp);
361         node[i].w = temp;
362     }
363 
364     if(S1) {
365         Sone::solve();
366         return;
367     }
368     if(S2) {
369         Stwo::solve();
370         return;
371     }
372 
373     return;
374 }
375 
376 int main() {
377 
378     //freopen("in.in", "r", stdin);
379     //freopen("my.out", "w", stdout);
380 
381     for(int i = 2; i < N; i++) pw[i] = pw[i >> 1] + 1;
382 
383     int T;
384     scanf("%d", &T);
385     while(T--) {
386         solve();
387         if(T) clear();
388     }
389     return 0;
390 }
35分S1+S2代碼

終於到正解了...考慮兩條鏈若是有交,那麼要麼是直上直下的交,lca不一樣;要麼是交了一段可能不直上直下的,lca相同。

那麼lca不一樣的全部狀況直接調用S1便可。lca相同的狀況,可能在不少點相同。此時咱們枚舉每一個點,把以這些點爲lca的鏈都提出來建虛樹,套用S2便可。

考慮爲何套用S1的時候不會把原本屬於S2的狀況算得更優。

注意到一個細節,就是S1中若是兩個鏈加到線段樹的同一下標上(lca相同),咱們是不會把這兩條鏈拿去更新答案的。因而S1中更新的就都是lca不一樣的啦!

  1 #include <bits/stdc++.h>
  2 
  3 #define forson(x, i) for(int i = e[x]; i; i = edge[i].nex)
  4 
  5 typedef long long LL;
  6 const int N = 300010;
  7 const LL INF = 4e18;
  8 
  9 struct Edge {
 10     int nex, v;
 11     LL len;
 12 }edge[N << 1]; int tp = 1;
 13 
 14 struct Node {
 15     int x, y, w;
 16     LL val, z;
 17 }node[N];
 18 
 19 struct Data {
 20     int a, b;
 21     Data(int A = 0, int B = 0) : a(A), b(B) {}
 22 }data[N];
 23 
 24 int e[N], num2, pos2[N], ST[N][20], pw[N], deep[N], n, m, fa[N], fr[N];
 25 LL d[N], Ans;
 26 
 27 inline void add(int x, int y, LL z) {
 28     tp++;
 29     edge[tp].v = y;
 30     edge[tp].len = z;
 31     edge[tp].nex = e[x];
 32     e[x] = tp;
 33     return;
 34 }
 35 
 36 inline void clear() {
 37     memset(e + 1, 0, n * sizeof(int));
 38     tp = 1;
 39     num2 = 0;
 40     return;
 41 }
 42 
 43 void DFS(int x, int f) {
 44     pos2[x] = ++num2;
 45     ST[num2][0] = x;
 46     deep[x] = deep[f] + 1;
 47     fa[x] = f;
 48     forson(x, i) {
 49         int y = edge[i].v;
 50         if(y == f) {
 51             continue;
 52         }
 53         d[y] = d[x] + edge[i].len;
 54         DFS(y, x);
 55         ST[++num2][0] = x;
 56     }
 57     return;
 58 }
 59 
 60 inline void prework() {
 61     for(int j = 1; j <= pw[num2]; j++) {
 62         for(int i = 1; i + (1 << j) - 1 <= num2; i++) {
 63             if(deep[ST[i][j - 1]] < deep[ST[i + (1 << (j - 1))][j - 1]]) {
 64                 ST[i][j] = ST[i][j - 1];
 65             }
 66             else {
 67                 ST[i][j] = ST[i + (1 << (j - 1))][j - 1];
 68             }
 69         }
 70     }
 71     return;
 72 }
 73 
 74 inline int lca(int x, int y) {
 75     x = pos2[fr[x]];
 76     y = pos2[fr[y]];
 77     if(x > y) std::swap(x, y);
 78     int t = pw[y - x + 1];
 79     if(deep[ST[x][t]] < deep[ST[y - (1 << t) + 1][t]]) {
 80         return ST[x][t];
 81     }
 82     else {
 83         return ST[y - (1 << t) + 1][t];
 84     }
 85 }
 86 
 87 inline LL dis(int x, int y) {
 88     if(!x || !y) return -INF;
 89     return d[x] + d[y] - 2 * d[lca(x, y)];
 90 }
 91 
 92 inline bool cmp(const int &a, const int &b) {
 93     return pos2[a] < pos2[b];
 94 }
 95 
 96 namespace Sone { /// lca != lca
 97     int rt[N];
 98     std::vector<int> v[N];
 99     namespace seg {
100         const int M = 10000010;
101 
102         int ls[M], rs[M], tot;
103         LL large[M], largeD[M];
104 
105         inline void pushup(int o) {
106             large[o] = std::max(large[ls[o]], large[rs[o]]);
107             largeD[o] = std::max(largeD[ls[o]], largeD[rs[o]]);
108             return;
109         }
110         void insert(int p, LL v, LL v2, LL v3, int l, int r, int &o) {
111             if(!o) {
112                 o = ++tot;
113                 ls[o] = rs[o] = 0;
114                 large[o] = largeD[o] = -INF;
115             }
116             if(l == r) {
117                 large[o] = std::max(large[o], v);
118                 largeD[o] = std::max(largeD[o], v + v2);
119                 return;
120             }
121             int mid = (l + r) >> 1;
122             if(p <= mid) {
123                 Ans = std::max(Ans, largeD[rs[o]] + v - v3);
124                 insert(p, v, v2, v3, l, mid, ls[o]);
125             }
126             else {
127                 Ans = std::max(Ans, large[ls[o]] + v + v2 - v3);
128                 insert(p, v, v2, v3, mid + 1, r, rs[o]);
129             }
130             pushup(o);
131             return;
132         }
133         int merge(int x, int y, LL v) {
134             if(!x || !y) return x | y;
135             Ans = std::max(Ans, std::max(large[ls[x]] + largeD[rs[y]], large[ls[y]] + largeD[rs[x]]) - v);
136             large[x] = std::max(large[x], large[y]);
137             largeD[x] = std::max(largeD[x], largeD[y]);
138             ls[x] = merge(ls[x], ls[y], v);
139             rs[x] = merge(rs[x], rs[y], v);
140             return x;
141         }
142         void del(int p, int l, int r, int o) {
143             if(!o) {
144                 return;
145             }
146             if(l == r) {
147                 large[o] = largeD[o] = -INF;
148                 return;
149             }
150             int mid = (l + r) >> 1;
151             if(p <= mid) {
152                 large[rs[o]] = largeD[rs[o]] = -INF;
153                 del(p, l, mid, ls[o]);
154             }
155             else {
156                 del(p, mid + 1, r, rs[o]);
157             }
158             pushup(o);
159             return;
160         }
161     }
162 
163     void DFS_1(int x, int f) {
164         for(int i = 0; i < (int)v[x].size(); i++) {
165             int t = v[x][i];
166             seg::insert(deep[node[t].w], node[t].val, d[node[t].w], d[x], 1, n, rt[x]);
167         }
168         forson(x, i) {
169             int y = edge[i].v;
170             if(y == f) continue;
171             DFS_1(y, x);
172             seg::del(deep[x], 1, n, rt[y]);
173             rt[x] = seg::merge(rt[x], rt[y], d[x]);
174         }
175         return;
176     }
177 
178     inline void solve() {
179         seg::tot = 0;
180         seg::large[0] = seg::largeD[0] = -INF;
181         memset(rt + 1, 0, n * sizeof(int));
182         for(int i = 1; i <= n; i++) v[i].clear();
183 
184         for(int i = 1; i <= m; i++) {
185             int x = node[i].x, y = node[i].y, z = node[i].w;
186             if(x != z) {
187                 v[x].push_back(i);
188             }
189             if(y != z) {
190                 v[y].push_back(i);
191             }
192         }
193 
194         DFS_1(1, 0);
195         return;
196     }
197 }
198 
199 namespace Stwo { /// lca = 1
200     Edge EDGE[N << 1]; int TP;
201     int E[N], use[N], Time, cnt, imp[N], stk[N], top;
202     std::vector<int> v[N], vx[N];
203 
204     inline void ADD(int x, int y) {
205         TP++;
206         EDGE[TP].v = y;
207         EDGE[TP].nex = E[x];
208         E[x] = TP;
209         return;
210     }
211 
212     inline void work(int x) {
213         if(use[x] != Time) {
214             use[x] = Time;
215             E[x] = 0;
216             v[x].clear();
217             data[x].a = data[x].b = 0;
218         }
219         return;
220     }
221 
222     inline void update(Data &x, const Data &y, const LL &v) {
223         LL d12 = dis(x.a, x.b), d34 = dis(y.a, y.b);
224         LL d13 = dis(x.a, y.a), d14 = dis(x.a, y.b);
225         LL d23 = dis(x.b, y.a), d24 = dis(x.b, y.b);
226         Ans = std::max(Ans, (std::max(std::max(d13, d14), std::max(d23, d24)) - v) >> 1);
227         int xa = x.a, xb = x.b;
228         if(d34 > d12) {
229             x = y;
230             d12 = d34;
231         }
232         if(d13 > d12) {
233             x = Data(xa, y.a);
234             d12 = d13;
235         }
236         if(d14 > d12) {
237             x = Data(xa, y.b);
238             d12 = d14;
239         }
240         if(d23 > d12) {
241             x = Data(xb, y.a);
242             d12 = d23;
243         }
244         if(d24 > d12) {
245             x = Data(xb, y.b);
246         }
247         if(!x.a) x = y;
248         return;
249     }
250 
251     inline void update(Data &x, const int &a, const LL &v) {
252         LL d1 = dis(x.a, a), d2 = dis(x.b, a), d3 = dis(x.a, x.b);
253         Ans = std::max(Ans, (std::max(d1, d2) - v) >> 1);
254         int xa = x.a, xb = x.b;
255         if(d1 > d3) {
256             x.b = a;
257             d3 = d1;
258         }
259         if(d2 > d3) {
260             x = Data(xb, a);
261         }
262         if(!x.a) x.a = a;
263         return;
264     }
265 
266     void dfs(int x, int f) {
267         for(int i = E[x]; i; i = EDGE[i].nex) {
268             int y = EDGE[i].v;
269             if(y == f) continue;
270             dfs(y, x);
271             if(f) update(data[x], data[y], d[x] << 1);
272         }
273         if(f) {
274             for(int i = 0; i < (int)v[x].size(); i++) {
275                 int t = v[x][i];
276                 update(data[x], t, d[x] << 1);
277             }
278         }
279         return;
280     }
281 
282     inline void build_t() {
283         std::sort(imp + 1, imp + cnt + 1, cmp);
284         cnt = std::unique(imp + 1, imp + cnt + 1) - imp - 1;
285 
286         stk[top = 1] = imp[1];
287         for(int i = 2; i <= cnt; i++) {
288             int x = imp[i], y = lca(x, stk[top]);
289             work(x); work(y);
290             while(top > 1 && pos2[y] <= pos2[stk[top - 1]]) {
291                 ADD(stk[top - 1], stk[top]);
292                 top--;
293             }
294             if(y != stk[top]) {
295                 ADD(y, stk[top]);
296                 stk[top] = y;
297             }
298             stk[++top] = x;
299         }
300         while(top > 1) {
301             ADD(stk[top - 1], stk[top]);
302             top--;
303         }
304         return;
305     }
306 
307     inline void solve() {
308 
309         for(int i = 1; i <= n; i++) {
310             vx[i].clear();
311         }
312 
313         for(int i = 1; i <= m; i++) {
314             vx[node[i].w].push_back(i);
315         }
316 
317         for(int rt = 1; rt <= n; rt++) {
318             if(!vx[rt].size()) continue;
319             ++Time;
320             TP = cnt = 0;
321             work(rt);
322             imp[++cnt] = rt;
323             for(int j = 0; j < (int)vx[rt].size(); j++) {
324                 int i = vx[rt][j];
325                 int x = node[i].x, y = node[i].y, z = node[i].w;
326                 work(x); work(y);
327                 imp[++cnt] = x;
328                 imp[++cnt] = y;
329                 if(x != z) {
330                     fr[n + i * 2 - 1] = y;
331                     d[n + i * 2 - 1] = d[y] + d[x] + node[i].val - node[i].z;
332                     v[x].push_back(n + i * 2 - 1);
333                 }
334                 if(y != z) {
335                     fr[n + i * 2] = x;
336                     d[n + i * 2] = d[x] + d[y] + node[i].val - node[i].z;
337                     v[y].push_back(n + i * 2);
338                 }
339             }
340             build_t();
341             dfs(rt, 0);
342         }
343         return;
344     }
345 }
346 
347 inline void solve() {
348     Ans = -INF;
349     scanf("%d", &n);
350     for(int i = 1; i <= n; i++) {
351         fr[i] = i;
352     }
353     LL z;
354     for(int i = 1, x, y; i < n; i++) {
355         scanf("%d%d%lld", &x, &y, &z);
356         add(x, y, z);
357         add(y, x, z);
358     }
359 
360     DFS(1, 0);
361     prework();
362 
363     scanf("%d", &m);
364     for(int i = 1, x, y; i <= m; i++) {
365         scanf("%d%d%lld", &x, &y, &z);
366         node[i].x = x;
367         node[i].y = y;
368         node[i].z = z;
369         node[i].val = dis(x, y) - z;
370         node[i].w = lca(x, y);
371     }
372 
373     Sone::solve();
374     Stwo::solve();
375 
376     if(Ans < (LL)-1e18) puts("F");
377     else printf("%lld\n", Ans);
378     return;
379 }
380 
381 int main() {
382 
383     for(int i = 2; i < N; i++) pw[i] = pw[i >> 1] + 1;
384 
385     int T;
386     scanf("%d", &T);
387     while(T--) {
388         solve();
389         if(T) clear();
390     }
391     return 0;
392 }
AC代碼

這什麼鬼題啊...搞了4天,結果寫完啥都沒學到......

相關文章
相關標籤/搜索