SparkSQL(Spark用於處理結構化數據的模塊)html
經過SparkSQL導入的數據能夠來自MySQL數據庫、Json數據、Csv數據等,經過load這些數據能夠對其作一系列計算java
下面經過程序代碼來詳細查看SparkSQL導入數據並寫入到ES中:node
數據集:北京市PM2.5數據python
Spark版本:2.3.2mysql
Python版本:3.5.2git
mysql-connector-java-8.0.11 下載github
ElasticSearch:6.4.1web
Kibana:6.4.1sql
elasticsearch-spark-20_2.11-6.4.1.jar 下載數據庫
具體代碼:
1 # coding: utf-8 2 import sys 3 import os 4 5 pre_current_dir = os.path.dirname(os.getcwd()) 6 sys.path.append(pre_current_dir) 7 from pyspark.sql import SparkSession 8 from pyspark.sql.types import * 9 from pyspark.sql.functions import udf 10 from settings import ES_CONF 11 12 current_dir = os.path.dirname(os.path.realpath(__file__)) 13 14 spark = SparkSession.builder.appName("weather_result").getOrCreate() 15 16 17 def get_health_level(value): 18 """ 19 PM2.5對應健康級別 20 :param value: 21 :return: 22 """ 23 if 0 <= value <= 50: 24 return "Very Good" 25 elif 50 < value <= 100: 26 return "Good" 27 elif 100 < value <= 150: 28 return "Unhealthy for Sensi" 29 elif value <= 200: 30 return "Unhealthy" 31 elif 200 < value <= 300: 32 return "Very Unhealthy" 33 elif 300 < value <= 500: 34 return "Hazardous" 35 elif value > 500: 36 return "Extreme danger" 37 else: 38 return None 39 40 41 def get_weather_result(): 42 """ 43 獲取Spark SQL分析後的數據 44 :return: 45 """ 46 # load所需字段的數據到DF 47 df_2017 = spark.read.format("csv") \ 48 .option("header", "true") \ 49 .option("inferSchema", "true") \ 50 .load("file://{}/data/Beijing2017_PM25.csv".format(current_dir)) \ 51 .select("Year", "Month", "Day", "Hour", "Value", "QC Name") 52 53 # 查看Schema 54 df_2017.printSchema() 55 56 # 經過udf將字符型health_level轉換爲column 57 level_function_udf = udf(get_health_level, StringType()) 58 59 # 新建列healthy_level 並healthy_level分組 60 group_2017 = df_2017.withColumn( 61 "healthy_level", level_function_udf(df_2017['Value']) 62 ).groupBy("healthy_level").count() 63 64 # 新建列days和percentage 並計算它們對應的值 65 result_2017 = group_2017.select("healthy_level", "count") \ 66 .withColumn("days", group_2017['count'] / 24) \ 67 .withColumn("percentage", group_2017['count'] / df_2017.count()) 68 result_2017.show() 69 70 return result_2017 71 72 73 def write_result_es(): 74 """ 75 將SparkSQL計算結果寫入到ES 76 :return: 77 """ 78 result_2017 = get_weather_result() 79 # ES_CONF配置 ES的node和index 80 result_2017.write.format("org.elasticsearch.spark.sql") \ 81 .option("es.nodes", "{}".format(ES_CONF['ELASTIC_HOST'])) \ 82 .mode("overwrite") \ 83 .save("{}/pm_value".format(ES_CONF['WEATHER_INDEX_NAME'])) 84 85 86 write_result_es() 87 spark.stop()
將mysql-connector-java-8.0.11和elasticsearch-spark-20_2.11-6.4.1.jar放到Spark的jars目錄下,提交spark任務便可。
注意:
(1) 若是提示:ClassNotFoundException Failed to find data source: org.elasticsearch.spark.sql.,則表示spark沒有發現jar包,此時需從新編譯pyspark:
cd /opt/spark-2.3.2-bin-hadoop2.7/python python3 setup.py sdist pip install dist/*.tar.gz
(2) 若是提示:Multiple ES-Hadoop versions detected in the classpath; please use only one ,
則表示ES-Hadoop jar包有多餘的,
可能既有elasticsearch-hadoop,又有elasticsearch-spark,此時刪除多餘的jar包,從新編譯pyspark 便可
執行效果:
更多源碼請關注個人github, https://github.com/a342058040/Spark-for-Python ,Spark相關技術全程用python實現,持續更新