從JDK源碼看,String、StringBuilder、StringBuffer都是存放在char[] 數組字符串。
簡單看下三者的部分源碼:
String定義屬性和構造方法:java
public final class String implements java.io.Serializable, Comparable<String>, CharSequence { private final char value[]; public String() { this.value = "".value; } public String(String original) { this.value = original.value; this.hash = original.hash; } public String(char value[]) { this.value = Arrays.copyOf(value, value.length); }
StringBuilder源碼:web
public final class StringBuilder extends AbstractStringBuilder implements java.io.Serializable, CharSequence { public StringBuilder() { super(16); } public StringBuilder(int capacity) { super(capacity); } public StringBuilder(String str) { super(str.length() + 16); append(str); }
StringBuffer源碼:數組
public final class StringBuffer extends AbstractStringBuilder implements java.io.Serializable, CharSequence { private transient char[] toStringCache; public StringBuffer() { super(16); }
比較明顯的是:
String 中定義的char[] 數組是用final 修飾,因此,String 是不可變字符序列,而StringBuilder和StringBuffer是可變字符序列;
若是Sting 須要改變則須要從新建立新對象;
StringBuffer 和 StringBuilder 都繼承 AbstractStringBuilder類,他們在初始化時,都是調用父類的構造器。緩存
接下來,咱們在簡單看下AbstractStringBuilder類源碼:安全
abstract class AbstractStringBuilder implements Appendable, CharSequence { /** * The value is used for character storage. */ char[] value; /** * The count is the number of characters used. */ int count; /** * This no-arg constructor is necessary for serialization of subclasses. */ AbstractStringBuilder() { } /** * Creates an AbstractStringBuilder of the specified capacity. */ AbstractStringBuilder(int capacity) { value = new char[capacity]; }
能夠看到 AbstractStringBuilder 其實也定義了char[] 數組,不一樣的是,AbstractStringBuilder 中的char[] 數組能夠可變的,在細看一點,能夠看到AbstractStringBuilder 有擴容的方法:app
private int newCapacity(int minCapacity) { // overflow-conscious code int newCapacity = (value.length << 1) + 2; if (newCapacity - minCapacity < 0) { newCapacity = minCapacity; } return (newCapacity <= 0 || MAX_ARRAY_SIZE - newCapacity < 0) ? hugeCapacity(minCapacity) : newCapacity; } private int hugeCapacity(int minCapacity) { if (Integer.MAX_VALUE - minCapacity < 0) { // overflow throw new OutOfMemoryError(); } return (minCapacity > MAX_ARRAY_SIZE) ? minCapacity : MAX_ARRAY_SIZE; }
接下來咱們繼續,看下String 、StringBuffer 和 StringBuilder的經常使用方法:
String的經常使用方法:jvm
public String substring(int beginIndex) { if (beginIndex < 0) { throw new StringIndexOutOfBoundsException(beginIndex); } int subLen = value.length - beginIndex; if (subLen < 0) { throw new StringIndexOutOfBoundsException(subLen); } return (beginIndex == 0) ? this : new String(value, beginIndex, subLen); } public String substring(int beginIndex, int endIndex) { if (beginIndex < 0) { throw new StringIndexOutOfBoundsException(beginIndex); } if (endIndex > value.length) { throw new StringIndexOutOfBoundsException(endIndex); } int subLen = endIndex - beginIndex; if (subLen < 0) { throw new StringIndexOutOfBoundsException(subLen); } return ((beginIndex == 0) && (endIndex == value.length)) ? this : new String(value, beginIndex, subLen); }
StringBuilder的經常使用方法:ide
@Override public StringBuilder append(int i) { super.append(i); return this; } @Override public StringBuilder append(long lng) { super.append(lng); return this; } @Override public StringBuilder append(float f) { super.append(f); return this; }
StringBuffer的經常使用方法:svg
@Override public synchronized StringBuffer append(CharSequence s, int start, int end) { toStringCache = null; super.append(s, start, end); return this; } @Override public synchronized StringBuffer append(char[] str) { toStringCache = null; super.append(str); return this; }
從它們的經常使用方法能夠看出:
String 每次返回的都是新字符串,因此咱們使用String的方法操做字符串後不影響原來的字符串;
StringBuffer 和 StringBuilder 返回的都是this,也就是對象自己,全部咱們能夠在代碼中連着寫append(xx).append(xxx).append(xxx);
不一樣的是StringBuffer的方法就加了synchronized 也就是咱們說的線程安全。
總結一下:
性能
咱們經過各自拼接10000字符串來比較一下三者在執行時對時間和對內存資源的佔用。
下面是測試代碼:
package com.xzlf.string; public class TestString { public static void main(String[] args) { // 使用 String 進行字符拼接 String str = ""; long num1 = Runtime.getRuntime().freeMemory();// 獲取系統剩餘內存空間 long time1 = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { str += i; // 至關於產生了5000個對象 } long num2 = Runtime.getRuntime().freeMemory(); long time2 = System.currentTimeMillis(); System.out.println("String 佔用了內存:" + (num1 - num2)); System.out.println("String 佔用了時間:" + (time2 - time1)); // 使用 StringBuilder 進行字符串拼接 StringBuilder sb = new StringBuilder(""); long num3 = Runtime.getRuntime().freeMemory(); long time3 = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { sb.append(i); } long num4 = Runtime.getRuntime().freeMemory(); long time4 = System.currentTimeMillis(); System.out.println("StringBuilder 佔用了內存:" + (num3 - num4)); System.out.println("StringBuilder 佔用了時間:" + (time4 - time3)); // 使用 StringBuilder 進行字符串拼接 StringBuffer sb2 = new StringBuffer(""); long num5 = Runtime.getRuntime().freeMemory(); long time5 = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { sb2.append(i); } long num6 = Runtime.getRuntime().freeMemory(); long time6 = System.currentTimeMillis(); System.out.println("StringBuffer 佔用了內存:" + (num5 - num6)); System.out.println("StringBuffer 佔用了時間:" + (time6 - time5)); } }
以上代碼運行結果爲:
能夠看到,String建立了大量無用對象,消耗了大量內存耗時上大概是StringBuffer 和 builder的100倍。
固然,咱們只循環了10000次,StringBuilder的優點不是很明顯,爲了防止java 虛擬機 jvm 垃圾回收機制的干擾 咱們我StringBuilder 和 StringBuffer 單獨拿出來吧循環次數加到10萬次、100萬次和1000萬次測試:
代碼吧String部分註釋掉,因爲循環次數較多,jvm 在運行時會有垃圾回收,內存對比會不正確,也先註釋:
package com.xzlf.string; public class TestString { public static void main(String[] args) { // 使用 String 進行字符拼接 // String str = ""; // long num1 = Runtime.getRuntime().freeMemory();// 獲取系統剩餘內存空間 // long time1 = System.currentTimeMillis(); // for (int i = 0; i < 10000; i++) { // str += i; // 至關於產生了5000個對象 // } // long num2 = Runtime.getRuntime().freeMemory(); // long time2 = System.currentTimeMillis(); // System.out.println("String 佔用了內存:" + (num1 - num2)); // System.out.println("String 佔用了時間:" + (time2 - time1)); // 使用 StringBuilder 進行字符串拼接 StringBuilder sb = new StringBuilder(""); long num3 = Runtime.getRuntime().freeMemory(); long time3 = System.currentTimeMillis(); for (int i = 0; i < 10000000; i++) { sb.append(i); } long num4 = Runtime.getRuntime().freeMemory(); long time4 = System.currentTimeMillis(); // System.out.println("StringBuilder 佔用了內存:" + (num3 - num4)); System.out.println("StringBuilder 佔用了時間:" + (time4 - time3)); // 使用 StringBuilder 進行字符串拼接 StringBuffer sb2 = new StringBuffer(""); long num5 = Runtime.getRuntime().freeMemory(); long time5 = System.currentTimeMillis(); for (int i = 0; i < 10000000; i++) { sb2.append(i); } long num6 = Runtime.getRuntime().freeMemory(); long time6 = System.currentTimeMillis(); // System.out.println("StringBuffer 佔用了內存:" + (num5 - num6)); System.out.println("StringBuffer 佔用了時間:" + (time6 - time5)); } }
我這邊測試10萬次結果爲:
100萬次結果爲:
1000萬次結果爲:
在數量太少的狀況下,StringBuilder 在StringBuffer加鎖的狀況下,並無體現出優點,反而StringBuffer 更勝一籌。
這種狀況相信不少測試過的小夥伴也應該遇到過???
對於這種狀況,其實也不難理解,append的操做本質仍是操做char[] 數組,咱們仍是繼續看源碼,
StringBuffer比StringBuilder多了一個緩衝區,
咱們看下StringBuffer的toString方法:
@Override public synchronized String toString() { if (toStringCache == null) { toStringCache = Arrays.copyOfRange(value, 0, count); } return new String(toStringCache, true); }
StringBuilder 的toString()方法:
@Override public String toString() { // Create a copy, don't share the array return new String(value, 0, count); }
咱們能夠看到StringBuffer的緩存有數據時,就直接在緩存區取,而StringBuilder每次都是直接copy。這樣StringBuffer 相對StringBuilder來講實際上是作了一個性能上的優化,全部只有當數量足夠大,StringBuffer的緩衝區填補不了加鎖影響的性能時,StringBuilder纔在性能上展示出了它的優點