Ubuntu 18.04配置OpenCV 4.2.0

[TOC]linux

本文主要介紹在Ubuntu 18.04中從源碼安裝配置OpenCV,並使用一個簡單的例子驗證是否安裝成功;c++

具體安裝配置步驟,參考文章見:https://cv-tricks.com/installation/opencv-4-1-ubuntu18-04/git

與上述連接中提供的教程不一樣的是:github

  • 部分依賴包安裝可能須要修改
  • 本文安裝配置OpenCV版本爲4.2,支持使用CUDA對DNN模塊加速計算
  • 本文不涉及Python接口配置,僅配置爲C++使用,因此會跳過步驟Step2~5

Step 1: 安裝OpenCV的依賴包

一步一步的安裝下面的全部依賴包:shell

sudo apt-get update -y # Update the list of packages
sudo apt-get remove -y x264 libx264-dev # Remove the older version of libx264-dev and x264
sudo apt-get install -y build-essential checkinstall cmake pkg-config yasm
sudo apt-get install -y git gfortran
sudo add-apt-repository -y "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get install -y libjpeg8-dev libjasper-dev libpng12-dev
sudo apt-get install -y libtiff5-dev
sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev
sudo apt-get install -y libxine2-dev libv4l-dev
sudo apt-get install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
sudo apt-get install -y qt5-default libgtk2.0-dev libtbb-dev
sudo apt-get install -y libatlas-base-dev
sudo apt-get install -y libfaac-dev libmp3lame-dev libtheora-dev
sudo apt-get install -y libvorbis-dev libxvidcore-dev
sudo apt-get install -y libopencore-amrnb-dev libopencore-amrwb-dev
sudo apt-get install -y x264 v4l-utils
 
# Some Optional Dependencies
sudo apt-get install -y libprotobuf-dev protobuf-compiler
sudo apt-get install -y libgoogle-glog-dev libgflags-dev
sudo apt-get install -y libgphoto2-dev libeigen3-dev libhdf5-dev doxygen

在安裝上述依賴包的過程當中,可能會存在一些錯誤提示,這裏我將本身遇到的問題列出,並給出解決方案; 錯誤1:ubuntu

E: Unable to locate package libjasper-dev

執行:vim

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get update

再次執行安裝依賴包就行;api

錯誤2:bash

E: Unable to locate package libgstreamer0.10-dev

執行:app

sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

便可;

Step 2: 下載OpenCV 4.2.0和OpenCV Contrib 4.2.0

OpenCV 4.2.0:
https://github.com/opencv/opencv/releases/tag/4.2.0

OpenCV Contib 4.2.0:
https://github.com/opencv/opencv_contrib/releases/tag/4.2.0

假如將兩個壓縮包保存到/home/username/opencv4.2/,進行解壓;

另外,在編譯的時候須要ippicv_2019_lnx_intel64_general_20180723.tgz這個文件,下載的時候會特別慢。這裏提供一個連接,參考其中的第1,2兩個步驟進行下載與配置;

如,我將下載獲得的文件放在了opencv4.2這個文件夾中,修改爲"/home/username/opencv4.2/";

最後目錄結構以下:

/home/username/opencv4.2/
	opencv-4.2.0/
	opencv_contrib-4.2.0/
	ippicv_2019_lnx_intel64_general_20180723.tgz

Step 3: 使用cmake構建庫

執行:

cd /home/username/opencv4.2/opencv-4.2.0
mkdir build
cd build

執行:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D INSTALL_C_EXAMPLES=ON \
      -D CUDA_ARCH_BIN='7.5'
      -D WITH_CUDA=ON
      -D WITH_TBB=ON \
      -D WITH_V4L=ON \
      -D WITH_QT=ON \
      -D WITH_OPENGL=ON \
      -D OPENCV_EXTRA_MODULES_PATH=/home/username/opencv4.2/opencv_contrib-4.2.0/modules \
      -D BUILD_EXAMPLES=ON \
      -D OPENCV_GENERATE_PKGCONFIG=YES ..

上述步驟須要修改的地方有兩處:

CUDA_ARCH_BIN='7.5'

因爲OpenCV 4.2支持使用CUDA對DNN模塊進行加速計算,因此這裏配置CUDA;在此以前須要自行配置好NVIDIA顯卡的驅動與CUDA;

其中7.5指的是顯卡的計算能力,個人是GTX 1660Ti,對應的計算力爲7.5;

這裏提供一個連接,能夠參考:NVIDA CUDA顯卡計算能力對應表

第二處須要修改的地方是:

OPENCV_EXTRA_MODULES_PATH=/home/username/opencv4.2/opencv_contrib-4.2.0/modules

這裏修改爲你本機的opencv_contrib-4.2.0/modules的位置

Step 4: 使用make構建庫

查看CPU核心數:

nproc

如,個人CPU核心數爲12,執行

cd /home/username/opencv4.2/build
make -j12

等待一段時候,出現Configuration Done便可,

執行:

sudo make install

再次等待一段時候後,執行:

sudo sh -c 'echo "/usr/local/lib" >> /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig

Step 5: 修改opencv4.pc文件

若是上述配置成功,則會在/usr/local/lib/文件夾中出現一個pkgconfig文件夾,裏面有一個opencv.pc文件,內容大體以下:

# Package Information for pkg-config

prefix=/usr/local
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir_old=${prefix}/include/opencv4/opencv2
includedir_new=${prefix}/include/opencv4

Name: OpenCV
Description: Open Source Computer Vision Library
Version: 4.2.0
Libs: -L${exec_prefix}/lib -lopencv_gapi -lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_cvv -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_sfm -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev
Libs.private: -lm -lpthread -L/usr/lib/x86_64-linux-gnu -lGL -lGLU -lcudart_static -ldl -lrt -lnppc -lnppial -lnppicc -lnppicom -lnppidei -lnppif -lnppig -lnppim -lnppist -lnppisu -lnppitc -lnpps -lcublas -lcudnn -lcufft -L-L/usr/local/cuda -llib64 -L-L/usr/lib -lx86_64-linux-gnu
Cflags: -I${includedir_old} -I${includedir_new}

注意:須要將第6行修改成:

includedir_old=${prefix}/include/opencv4/opencv2

若是沒有自動生成,能夠試着新建一個文件,將上述的內容複製進去,繼續下一步;

Step 6: 在.bashrc文件中添加PKG_CONFIG_PATH

執行:

sudo gedit ~/.bashrc

在文件最後添加:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

退出後,執行

source ~/.bashrc

# 判斷路徑時候添加成功,返回:/usr/local/lib/pkgconfig便可
echo $PKG_CONFIG_PATH

Step 7: 使用C++代碼進行驗證

在任意目錄下建立test.cpp文件,加入下面內容:

#include "opencv.hpp"
 
using namespace cv;
using namespace std;
 
int main( int argc, char** argv )
{
  cout << "OpenCV version : " << CV_VERSION << endl;
  cout << "Major version : " << CV_MAJOR_VERSION << endl;
  cout << "Minor version : " << CV_MINOR_VERSION << endl;
  cout << "Subminor version : " << CV_SUBMINOR_VERSION << endl;
}

使用命令行在其文件夾下執行:

# 編譯test.cpp程序,並生成可執行文件
g++ -std=c++11 test.cpp `pkg-config --libs --cflags opencv4` -o result

# 執行可執行文件
./result

輸出如下內容,即代表配置成功

OpenCV version : 4.2.0
Major version : 4
Minor version : 2
Subminor version : 0
相關文章
相關標籤/搜索