[TOC]linux
本文主要介紹在Ubuntu 18.04中從源碼安裝配置OpenCV,並使用一個簡單的例子驗證是否安裝成功;c++
具體安裝配置步驟,參考文章見:https://cv-tricks.com/installation/opencv-4-1-ubuntu18-04/git
與上述連接中提供的教程不一樣的是:github
- 部分依賴包安裝可能須要修改
- 本文安裝配置OpenCV版本爲4.2,支持使用CUDA對DNN模塊加速計算
- 本文不涉及Python接口配置,僅配置爲C++使用,因此會跳過步驟Step2~5
Step 1: 安裝OpenCV的依賴包
一步一步的安裝下面的全部依賴包:shell
sudo apt-get update -y # Update the list of packages sudo apt-get remove -y x264 libx264-dev # Remove the older version of libx264-dev and x264 sudo apt-get install -y build-essential checkinstall cmake pkg-config yasm sudo apt-get install -y git gfortran sudo add-apt-repository -y "deb http://security.ubuntu.com/ubuntu xenial-security main" sudo apt-get install -y libjpeg8-dev libjasper-dev libpng12-dev sudo apt-get install -y libtiff5-dev sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev sudo apt-get install -y libxine2-dev libv4l-dev sudo apt-get install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev sudo apt-get install -y qt5-default libgtk2.0-dev libtbb-dev sudo apt-get install -y libatlas-base-dev sudo apt-get install -y libfaac-dev libmp3lame-dev libtheora-dev sudo apt-get install -y libvorbis-dev libxvidcore-dev sudo apt-get install -y libopencore-amrnb-dev libopencore-amrwb-dev sudo apt-get install -y x264 v4l-utils # Some Optional Dependencies sudo apt-get install -y libprotobuf-dev protobuf-compiler sudo apt-get install -y libgoogle-glog-dev libgflags-dev sudo apt-get install -y libgphoto2-dev libeigen3-dev libhdf5-dev doxygen
在安裝上述依賴包的過程當中,可能會存在一些錯誤提示,這裏我將本身遇到的問題列出,並給出解決方案; 錯誤1:ubuntu
E: Unable to locate package libjasper-dev
執行:vim
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main" sudo apt-get update
再次執行安裝依賴包就行;api
錯誤2:bash
E: Unable to locate package libgstreamer0.10-dev
執行:app
sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
便可;
Step 2: 下載OpenCV 4.2.0和OpenCV Contrib 4.2.0
OpenCV 4.2.0: https://github.com/opencv/opencv/releases/tag/4.2.0 OpenCV Contib 4.2.0: https://github.com/opencv/opencv_contrib/releases/tag/4.2.0
假如將兩個壓縮包保存到/home/username/opencv4.2/
,進行解壓;
另外,在編譯的時候須要ippicv_2019_lnx_intel64_general_20180723.tgz
這個文件,下載的時候會特別慢。這裏提供一個連接,參考其中的第1,2兩個步驟進行下載與配置;
如,我將下載獲得的文件放在了opencv4.2
這個文件夾中,修改爲"/home/username/opencv4.2/"
;
最後目錄結構以下:
/home/username/opencv4.2/ opencv-4.2.0/ opencv_contrib-4.2.0/ ippicv_2019_lnx_intel64_general_20180723.tgz
Step 3: 使用cmake構建庫
執行:
cd /home/username/opencv4.2/opencv-4.2.0 mkdir build cd build
執行:
cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D INSTALL_C_EXAMPLES=ON \ -D CUDA_ARCH_BIN='7.5' -D WITH_CUDA=ON -D WITH_TBB=ON \ -D WITH_V4L=ON \ -D WITH_QT=ON \ -D WITH_OPENGL=ON \ -D OPENCV_EXTRA_MODULES_PATH=/home/username/opencv4.2/opencv_contrib-4.2.0/modules \ -D BUILD_EXAMPLES=ON \ -D OPENCV_GENERATE_PKGCONFIG=YES ..
上述步驟須要修改的地方有兩處:
CUDA_ARCH_BIN='7.5'
因爲OpenCV 4.2支持使用CUDA對DNN模塊進行加速計算,因此這裏配置CUDA;在此以前須要自行配置好NVIDIA顯卡的驅動與CUDA;
其中7.5
指的是顯卡的計算能力,個人是GTX 1660Ti,對應的計算力爲7.5;
這裏提供一個連接,能夠參考:NVIDA CUDA顯卡計算能力對應表
第二處須要修改的地方是:
OPENCV_EXTRA_MODULES_PATH=/home/username/opencv4.2/opencv_contrib-4.2.0/modules
這裏修改爲你本機的opencv_contrib-4.2.0/modules
的位置
Step 4: 使用make構建庫
查看CPU核心數:
nproc
如,個人CPU核心數爲12,執行
cd /home/username/opencv4.2/build make -j12
等待一段時候,出現Configuration Done
便可,
執行:
sudo make install
再次等待一段時候後,執行:
sudo sh -c 'echo "/usr/local/lib" >> /etc/ld.so.conf.d/opencv.conf' sudo ldconfig
Step 5: 修改opencv4.pc
文件
若是上述配置成功,則會在/usr/local/lib/
文件夾中出現一個pkgconfig
文件夾,裏面有一個opencv.pc
文件,內容大體以下:
# Package Information for pkg-config prefix=/usr/local exec_prefix=${prefix} libdir=${exec_prefix}/lib includedir_old=${prefix}/include/opencv4/opencv2 includedir_new=${prefix}/include/opencv4 Name: OpenCV Description: Open Source Computer Vision Library Version: 4.2.0 Libs: -L${exec_prefix}/lib -lopencv_gapi -lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_cvv -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_sfm -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev Libs.private: -lm -lpthread -L/usr/lib/x86_64-linux-gnu -lGL -lGLU -lcudart_static -ldl -lrt -lnppc -lnppial -lnppicc -lnppicom -lnppidei -lnppif -lnppig -lnppim -lnppist -lnppisu -lnppitc -lnpps -lcublas -lcudnn -lcufft -L-L/usr/local/cuda -llib64 -L-L/usr/lib -lx86_64-linux-gnu Cflags: -I${includedir_old} -I${includedir_new}
注意:須要將第6行修改成:
includedir_old=${prefix}/include/opencv4/opencv2
若是沒有自動生成,能夠試着新建一個文件,將上述的內容複製進去,繼續下一步;
Step 6: 在.bashrc
文件中添加PKG_CONFIG_PATH
執行:
sudo gedit ~/.bashrc
在文件最後添加:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig export PKG_CONFIG_PATH
退出後,執行
source ~/.bashrc # 判斷路徑時候添加成功,返回:/usr/local/lib/pkgconfig便可 echo $PKG_CONFIG_PATH
Step 7: 使用C++代碼進行驗證
在任意目錄下建立test.cpp
文件,加入下面內容:
#include "opencv.hpp" using namespace cv; using namespace std; int main( int argc, char** argv ) { cout << "OpenCV version : " << CV_VERSION << endl; cout << "Major version : " << CV_MAJOR_VERSION << endl; cout << "Minor version : " << CV_MINOR_VERSION << endl; cout << "Subminor version : " << CV_SUBMINOR_VERSION << endl; }
使用命令行在其文件夾下執行:
# 編譯test.cpp程序,並生成可執行文件 g++ -std=c++11 test.cpp `pkg-config --libs --cflags opencv4` -o result # 執行可執行文件 ./result
輸出如下內容,即代表配置成功
OpenCV version : 4.2.0 Major version : 4 Minor version : 2 Subminor version : 0