本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78818917html
1、Android so庫文件的節表secion修復方案整理git
1. 簡單粗暴的so加解密實現
github
https://bbs.pediy.com/thread-191649.htm
2. ELF section修復的一些思考
數組
https://bbs.pediy.com/thread-192874.htm
3. 從零打造簡單的SODUMP工具
數據結構
https://bbs.pediy.com/thread-194053.htm
4. 基於init_array加密的SO的脫殼
app
http://ele7enxxh.com/Unpack-Android-Shared-Library-Based-On-Init_Array-Encryption.html
5. ELF文件格式學習,section修復
less
http://blog.csdn.net/yi_nuo_wang/article/details/72626846
6. Android逆向中So模塊自動化修復工具+實戰一發
ide
https://bbs.pediy.com/thread-221741.htm
7. Android加固中So文件自動化修復工具GUI
函數
https://bbs.pediy.com/thread-221878.htm
8. SoFixer
工具
https://github.com/F8LEFT/SoFixer
2、Android so庫文件的節表secion修復的方案討論
Android so庫文件的節表secion修復的方法,最先是由 ThomasKing 在《ELF section修復的一些思考》一文中提到的,儘管方法還不是很完美可是使用 IDA Pro 對修復後Android so庫文件進行靜態逆向分析,效果仍是不錯的。須要提到的是:Android系統 7.0 之後,Android系統在進行Android so庫文件的加載時,會對加載的Android so庫文件 ELF 格式的seciton節表進行檢查和判斷,所以之後爲了兼顧Android 7.0的系統,Android加固會保留被保護Android so庫文件的section節表,可是並不表明Android加固會減弱對Android so庫文件的保護。
被Android 加固保護的Android so庫文件儘管已經失去了 ELF 文件格式的section節表頭段信息,可是經過 ThomasKing 提到的ELF section修復的方法,仍是能夠修復絕大部分的對靜態逆向分析有用的seciton節表頭段。ELF 文件格式有兩種視圖:連接視圖和執行視圖,ELF文件在編譯連接的時候須要連接格式的視圖,在ELF文件執行的時候須要執行視圖不須要連接視圖。
Android so庫文件加載到內存並解析連接主要依賴於ELF文件格式的可執行視圖,在ELF文件可執行視圖的狀況下,有一個重要結構的 程序段描述頭表 .dynamic段,.dynamic段裏保存了動態鏈接器所須要的基本信息以下圖所示:
很顯然,根據ELF文件可執行視圖時的.dynamic段描述的一些信息,可以獲取到ELF文件連接視圖時的一些重要區節表頭的偏移和大小信息,能夠完成對這些section區節的重建,.dynamic段 在Android so庫文件的動態連接時的實現代碼以下所示(以Android 4.4.4 r1的源碼爲例):
static bool soinfo_link_image(soinfo* si) { /* "base" might wrap around UINT32_MAX. */ Elf32_Addr base = si->load_bias; const Elf32_Phdr *phdr = si->phdr; int phnum = si->phnum; bool relocating_linker = (si->flags & FLAG_LINKER) != 0; /* We can't debug anything until the linker is relocated */ if (!relocating_linker) { INFO("[ linking %s ]", si->name); DEBUG("si->base = 0x%08x si->flags = 0x%08x", si->base, si->flags); } /* Extract dynamic section */ size_t dynamic_count; Elf32_Word dynamic_flags; phdr_table_get_dynamic_section(phdr, phnum, base, &si->dynamic, &dynamic_count, &dynamic_flags); if (si->dynamic == NULL) { if (!relocating_linker) { DL_ERR("missing PT_DYNAMIC in \"%s\"", si->name); } return false; } else { if (!relocating_linker) { DEBUG("dynamic = %p", si->dynamic); } } #ifdef ANDROID_ARM_LINKER (void) phdr_table_get_arm_exidx(phdr, phnum, base, &si->ARM_exidx, &si->ARM_exidx_count); #endif // Extract useful information from dynamic section. // 從動態鏈接段.dynamic段獲取重要信息 uint32_t needed_count = 0; for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) { DEBUG("d = %p, d[0](tag) = 0x%08x d[1](val) = 0x%08x", d, d->d_tag, d->d_un.d_val); switch(d->d_tag){ case DT_HASH: si->nbucket = ((unsigned *) (base + d->d_un.d_ptr))[0]; si->nchain = ((unsigned *) (base + d->d_un.d_ptr))[1]; si->bucket = (unsigned *) (base + d->d_un.d_ptr + 8); si->chain = (unsigned *) (base + d->d_un.d_ptr + 8 + si->nbucket * 4); break; case DT_STRTAB: si->strtab = (const char *) (base + d->d_un.d_ptr); break; case DT_SYMTAB: si->symtab = (Elf32_Sym *) (base + d->d_un.d_ptr); break; case DT_PLTREL: if (d->d_un.d_val != DT_REL) { DL_ERR("unsupported DT_RELA in \"%s\"", si->name); return false; } break; case DT_JMPREL: si->plt_rel = (Elf32_Rel*) (base + d->d_un.d_ptr); break; case DT_PLTRELSZ: si->plt_rel_count = d->d_un.d_val / sizeof(Elf32_Rel); break; case DT_REL: si->rel = (Elf32_Rel*) (base + d->d_un.d_ptr); break; case DT_RELSZ: si->rel_count = d->d_un.d_val / sizeof(Elf32_Rel); break; case DT_PLTGOT: /* Save this in case we decide to do lazy binding. We don't yet. */ si->plt_got = (unsigned *)(base + d->d_un.d_ptr); break; case DT_DEBUG: // Set the DT_DEBUG entry to the address of _r_debug for GDB // if the dynamic table is writable if ((dynamic_flags & PF_W) != 0) { d->d_un.d_val = (int) &_r_debug; } break; case DT_RELA: DL_ERR("unsupported DT_RELA in \"%s\"", si->name); return false; case DT_INIT: si->init_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT) found at %p", si->name, si->init_func); break; case DT_FINI: si->fini_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI) found at %p", si->name, si->fini_func); break; case DT_INIT_ARRAY: si->init_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", si->name, si->init_array); break; case DT_INIT_ARRAYSZ: si->init_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr); break; case DT_FINI_ARRAY: si->fini_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", si->name, si->fini_array); break; case DT_FINI_ARRAYSZ: si->fini_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr); break; case DT_PREINIT_ARRAY: si->preinit_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr); DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", si->name, si->preinit_array); break; case DT_PREINIT_ARRAYSZ: si->preinit_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr); break; case DT_TEXTREL: si->has_text_relocations = true; break; case DT_SYMBOLIC: si->has_DT_SYMBOLIC = true; break; case DT_NEEDED: ++needed_count; break; #if defined DT_FLAGS // TODO: why is DT_FLAGS not defined? case DT_FLAGS: if (d->d_un.d_val & DF_TEXTREL) { si->has_text_relocations = true; } if (d->d_un.d_val & DF_SYMBOLIC) { si->has_DT_SYMBOLIC = true; } break; #endif #if defined(ANDROID_MIPS_LINKER) case DT_STRSZ: case DT_SYMENT: case DT_RELENT: break; case DT_MIPS_RLD_MAP: // Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB. { r_debug** dp = (r_debug**) d->d_un.d_ptr; *dp = &_r_debug; } break; case DT_MIPS_RLD_VERSION: case DT_MIPS_FLAGS: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_UNREFEXTNO: break; case DT_MIPS_SYMTABNO: si->mips_symtabno = d->d_un.d_val; break; case DT_MIPS_LOCAL_GOTNO: si->mips_local_gotno = d->d_un.d_val; break; case DT_MIPS_GOTSYM: si->mips_gotsym = d->d_un.d_val; break; default: DEBUG("Unused DT entry: type 0x%08x arg 0x%08x", d->d_tag, d->d_un.d_val); break; #endif } } DEBUG("si->base = 0x%08x, si->strtab = %p, si->symtab = %p", si->base, si->strtab, si->symtab); // Sanity checks. if (relocating_linker && needed_count != 0) { DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries"); return false; } if (si->nbucket == 0) { DL_ERR("empty/missing DT_HASH in \"%s\" (built with --hash-style=gnu?)", si->name); return false; } if (si->strtab == 0) { DL_ERR("empty/missing DT_STRTAB in \"%s\"", si->name); return false; } if (si->symtab == 0) { DL_ERR("empty/missing DT_SYMTAB in \"%s\"", si->name); return false; } // If this is the main executable, then load all of the libraries from LD_PRELOAD now. if (si->flags & FLAG_EXE) { memset(gLdPreloads, 0, sizeof(gLdPreloads)); size_t preload_count = 0; for (size_t i = 0; gLdPreloadNames[i] != NULL; i++) { soinfo* lsi = find_library(gLdPreloadNames[i]); if (lsi != NULL) { gLdPreloads[preload_count++] = lsi; } else { // As with glibc, failure to load an LD_PRELOAD library is just a warning. DL_WARN("could not load library \"%s\" from LD_PRELOAD for \"%s\"; caused by %s", gLdPreloadNames[i], si->name, linker_get_error_buffer()); } } } soinfo** needed = (soinfo**) alloca((1 + needed_count) * sizeof(soinfo*)); soinfo** pneeded = needed; for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_NEEDED) { const char* library_name = si->strtab + d->d_un.d_val; DEBUG("%s needs %s", si->name, library_name); soinfo* lsi = find_library(library_name); if (lsi == NULL) { strlcpy(tmp_err_buf, linker_get_error_buffer(), sizeof(tmp_err_buf)); DL_ERR("could not load library \"%s\" needed by \"%s\"; caused by %s", library_name, si->name, tmp_err_buf); return false; } *pneeded++ = lsi; } } *pneeded = NULL; if (si->has_text_relocations) { /* Unprotect the segments, i.e. make them writable, to allow * text relocations to work properly. We will later call * phdr_table_protect_segments() after all of them are applied * and all constructors are run. */ DL_WARN("%s has text relocations. This is wasting memory and is " "a security risk. Please fix.", si->name); if (phdr_table_unprotect_segments(si->phdr, si->phnum, si->load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", si->name, strerror(errno)); return false; } } if (si->plt_rel != NULL) { DEBUG("[ relocating %s plt ]", si->name ); if (soinfo_relocate(si, si->plt_rel, si->plt_rel_count, needed)) { return false; } } if (si->rel != NULL) { DEBUG("[ relocating %s ]", si->name ); if (soinfo_relocate(si, si->rel, si->rel_count, needed)) { return false; } } #ifdef ANDROID_MIPS_LINKER if (!mips_relocate_got(si, needed)) { return false; } #endif si->flags |= FLAG_LINKED; DEBUG("[ finished linking %s ]", si->name); if (si->has_text_relocations) { /* All relocations are done, we can protect our segments back to * read-only. */ if (phdr_table_protect_segments(si->phdr, si->phnum, si->load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", si->name, strerror(errno)); return false; } } /* We can also turn on GNU RELRO protection */ if (phdr_table_protect_gnu_relro(si->phdr, si->phnum, si->load_bias) < 0) { DL_ERR("can't enable GNU RELRO protection for \"%s\": %s", si->name, strerror(errno)); return false; } notify_gdb_of_load(si); return true; }
經過Android NDK提供的工具 readelf程序 能夠查看ELF文件格式相關的信息,執行 readelf -l xxx.so 命令能夠查看ELF文件的連接視圖 區節section 和 可執行視圖的 段 segment 的映射對應關係以下所示,再結合可執行視圖時 .dynamic段 解析所能獲取到的一些重要的區節表頭的內存相對虛擬地址(VA)和大小(size)信息,能夠實現ELF文件的連接視圖重要區節section的重建,這也是 ThomasKing 提供的ELF文件節表section修復的思路。如今有些Android加固爲了防止Android so庫文件的節表section被修復,在外殼Android so庫文件的構造函數調用時完成了JNI_Onload函數的代碼解密以後,會將外殼Android so庫文件的ELF文件頭和程序段segment表的信息在內存抹掉,防止外殼Android so庫文件的內存dump和dump以後的節表section被修復。
在文章《ELF section修復的一些思考》中,ThomasKing 提供的Android so庫文件的節表section修復的思路整理以下:
從segment信息能夠看出, 對.dynamic和.arm_exidx的section重建很簡單,即讀取便可。
經過.dynamic段,能夠對大部分section進行重建,具體以下:
1. 經過DT_SYMTAB,DT_STRTAB,DT_STRSZ,DT_REL,DT_RELSZ,DT_JMPREL, DT_PLTRELSZ,DT_INIT_ARRAY,DT_INIT_ARRAYSZ,DT_FINI_ARRAY,DT_FINI_ARRAYSZ 獲得.dynsym,.dynstr, rel.dyn, rel.plt, init_array, fini_array 相應的section vaddr 和 size信息,完成對上述section的重建。這裏須要注意,處於load2中的section,offset = vaddr – 0x1000。
2. 經過DT_HASH獲得hash section的vaddr,而後讀入前兩項獲得nbucket和nchain的值,獲得hashsz = (nbucket + nchain + 2) * sizeof(int), 完成對hash表重建。
3. Plt的起始位置即爲rel.plt的末尾,經過1中的對rel.plt的處理,便可獲得plt的offset和vaddr信息。經過plt的結構知道,plt由固定16字節 + 4字節的__global__offset_table變量和n個須要重定位的函數地址構成,函數地址又與rel.plt中的結構一一對應。故size = (20 + 12 * (rel.plt.size) / sizeof(Elf32_Rel)。
4. 從DT_PLTGOT能夠獲得__global_offset_table的偏移位置。由got表的結構知道,__global_offset_table前是rel.dyn重定位結構,以後爲rel.plt重定位結構,都與rel一一對應。則got表的重建具體爲:經過已重建的.dynamic獲得got起始位置,經過__global_offset_table 偏移 + 4 * (rel.plt.size) / sizeof(Elf32_Rel)(這裏還須要添加2個int的填充位置)獲得got的末尾,經過首尾位置獲得got的size,完成重建。
5. 經過got的末尾,獲得data的起始位置,再經過load2_vaddr + load2_filesz獲得load2的末尾(load2即第二個LOAD),即data的末尾位置,計算長度,完成修正。可能讀者會問,bss纔是load2的最後一個section。的確,但bss爲NOBITS,便可把data看做load2最後一個section。
6. 對bss的修正就很簡單,offset和vaddr即爲load2末尾。因爲未NOBITS類型,長度信息可有可無。
7. 到這裏,讀者可能已經發現,還沒對text和ARM.extab修正。限於本人水平,還沒能找到方法區分開這兩個section。現處理是將之合併,做爲text & ARM.extab節。具體修正:offset和vaddr經過plt末尾獲得,長度經過ARM.exidx的起始位置和plt末尾位置計算獲得。
8. 至此,絕大部分section信息已經重建完成。最後,在將shstrtab添加,並修正Elf32_Ehdr,完成section重建。雖然未100%重建,但已經可以幫助分析了。重建後的如圖所示,圖中紅色部分便是未分離的test & ARM.extab section。
文章《ELF文件格式學習,section修復》就是根據ThomasKing 提供的Android so庫文件的節表section修復的思路實現的代碼,可是該做者提供的代碼仍是有一些小問題,好比說,關於ELF文件的節表section修復時候,申請存放section頭表內存的大小(應該使用elf文件加載到內存後的文件大小,由於Android so加固會修改ELF文件頭中關於section區節的描述變量如偏移、大小等信息)以及構造的seciton區節名稱字符串表的存放文件偏移有點小問題(第2個P_LOAD段結束的位置偏移),不該該按照這個思路去處理,而且做者給出的代碼只能適用於從內存中dump出的Android so庫文件的修復,考慮的還不是很周到。原本打算將做者的代碼優化和修改一下的,可是沒那麼多精力,就不獻醜了,仍是要感謝原做者王一諾和ThomasKing。
文章《ELF文件格式學習,section修復》的做者在進行seciton重建的時候,對區節section段的描述結構體 Elf32_Shdr 中,除sh_addr、sh_offset、sh_size、sh_name以外的其餘成員變量的信息沒有修正,其實修正也很簡單,直接按照下圖中 Android so庫文件 連接視圖中區節section信息 進行對應區節section頭表段成員變量屬性值的修正。經過Android NDK 提供的工具readelf,執行 readelf –S 命令,便可獲得Android so庫文件的連接視圖時的各區節section段的描述結構體Elf32_Shdr的其餘成員變量的屬性值,對照着對應的段進行Elf32_Shdr結構體其餘成員變量的屬性值的修正。
typedef struct elf32_shdr { Elf32_Word sh_name; Elf32_Word sh_type; Elf32_Word sh_flags; Elf32_Addr sh_addr; Elf32_Off sh_offset; Elf32_Word sh_size; Elf32_Word sh_link; Elf32_Word sh_info; Elf32_Word sh_addralign; Elf32_Word sh_entsize; } Elf32_Shdr; typedef struct elf64_shdr { Elf64_Word sh_name; /* Section name, index in string tbl */ Elf64_Word sh_type; /* Type of section */ Elf64_Xword sh_flags; /* Miscellaneous section attributes */ Elf64_Addr sh_addr; /* Section virtual addr at execution */ Elf64_Off sh_offset; /* Section file offset */ Elf64_Xword sh_size; /* Size of section in bytes */ Elf64_Word sh_link; /* Index of another section */ Elf64_Word sh_info; /* Additional section information */ Elf64_Xword sh_addralign; /* Section alignment */ Elf64_Xword sh_entsize; /* Entry size if section holds table */ } Elf64_Shdr;
文章《ELF文件格式學習,section修復》的做者對 ThomasKing 提出的ELF文件的區節表section修復方案的思考和疑問。
3、對文章《ELF文件格式學習,section修復》中的代碼進行分析。
對文章《ELF文件格式學習,section修復》中 提到的代碼進行了註釋分析,工程主要有3個源碼文件 elf.h、fix.h、fix.c 組成,Android so庫文件區節section修復主要操做的源碼文件 fix.c 的代碼註釋以下:
#define _CRT_SECURE_NO_WARNINGS #include "fix.h" #ifndef SHT_ARM_EXIDX #define SHT_ARM_EXIDX (SHT_LOPROC + 1) #endif #define SHT_INIT_ARRAY 14 #define SHT_FINI_ARRAY 15 #define SHF_LINK_ORDER (1 << 7) /* Preserve order after combining */ char* str = "..dynsym..dynstr..hash..rel.dyn..rel.plt..text..ARM.extab..ARM.exidx..fini_array..init_array..dynamic..got..data..bass..shstrtab\0"; char* str1 = "..dynsym\0.dynstr\0.hash\0.rel.dyn\0.rel.plt\0.text\0.ARM.extab\0.ARM.exidx\0.fini_array\0.init_array\0.dynamic\0.got\0.data\0.bass\0.shstrtab\0"; Elf32_Shdr shdr[SHDRS] = { 0 }; // 讀取ELF文件的Elf32_Ehdr信息 void get_elf_header(char* buffer, Elf32_Ehdr** pehdr) { int header_len = sizeof(Elf32_Ehdr); memset(*pehdr, 0, header_len); memcpy(*pehdr, (void*)buffer, header_len); } // 讀取ELF文件的程序頭表的信息 void get_program_table(Elf32_Ehdr ehdr, char* buffer, Elf32_Phdr** pphdr) { int ph_size = ehdr.e_phentsize; int ph_num = ehdr.e_phnum; memset(*pphdr, 0, ph_size * ph_num); memcpy(*pphdr, buffer + ehdr.e_phoff,ph_size * ph_num); } // 獲取須要修復的Android so文件的大小 long get_file_len(FILE* p) { fseek (p, 0, SEEK_END); // 獲取到整個文件的大小 long fsize = ftell (p); // 從新設置文件指針到開頭 rewind (p); return fsize; } // 進行須要修復的ELF文件的區節頭表的重建 void get_Info(Elf32_Phdr* phdr, Elf32_Ehdr *pehdr, char* buffer, char** sh_buffer, int sh_len) { Elf32_Dyn* dyn = NULL; Elf32_Dyn* d = NULL; Elf32_Phdr load = { 0 }; int ph_num = pehdr->e_phnum; int dyn_size = 0, dyn_off = 0; int nbucket = 0, nchain = 0; int flag = 0, i = 0; // 用於存放ELF文件的區節頭表信息 memset(*sh_buffer, 0, sh_len); i = 0; for(;i < ph_num;i++) { if (phdr[i].p_type == PT_LOAD) { if (phdr[i].p_vaddr > 0x0) { load = phdr[i]; // 進行 .bss 區節頭的重建 shdr[BSS].sh_name = strstr(str,".bss") - str; shdr[BSS].sh_type = SHT_NOBITS; shdr[BSS].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[BSS].sh_addr = phdr[i].p_vaddr + phdr[i].p_filesz; shdr[BSS].sh_offset = shdr[BSS].sh_addr - 0x1000; shdr[BSS].sh_size = 0; shdr[BSS].sh_link = 0; shdr[BSS].sh_info = 0; shdr[BSS].sh_entsize = 0 shdr[BSS].sh_addralign = 1; continue; } } if(phdr[i].p_type == PT_DYNAMIC) { // 進行 .dynamic 區節頭的重建 // 設置".dynamic"區節頭名稱在.shstr.tab中的偏移值 shdr[DYNAMIC].sh_name = strstr(str, ".dynamic") - str; shdr[DYNAMIC].sh_type = SHT_DYNAMIC; shdr[DYNAMIC].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[DYNAMIC].sh_addr = phdr[i].p_vaddr; shdr[DYNAMIC].sh_offset = phdr[i].p_offset; shdr[DYNAMIC].sh_size = phdr[i].p_filesz; shdr[DYNAMIC].sh_link = 2; shdr[DYNAMIC].sh_info = 0; shdr[DYNAMIC].sh_addralign = 4; shdr[DYNAMIC].sh_entsize = 8; // 獲得.dynamic區節段的數據 dyn_off = phdr[i].p_offset; dyn_size = phdr[i].p_filesz; continue; } // ThomasKing修復時使用的是PT_LOPROC + 1 if(phdr[i].p_type == PT_LOPROC || phdr[i].p_type == PT_LOPROC + 1) { // 進行".ARM.exidx" 區節頭的重建 shdr[ARMEXIDX].sh_name = strstr(str, ".ARM.exidx") - str; shdr[ARMEXIDX].sh_type = SHT_ARM_EXIDX; shdr[ARMEXIDX].sh_flags = SHF_ALLOC + SHF_LINK_ORDER; shdr[ARMEXIDX].sh_addr = phdr[i].p_vaddr; shdr[ARMEXIDX].sh_offset = phdr[i].p_offset; shdr[ARMEXIDX].sh_size = phdr[i].p_filesz; shdr[ARMEXIDX].sh_link = 7; shdr[ARMEXIDX].sh_info = 0; shdr[ARMEXIDX].sh_addralign = 4; shdr[ARMEXIDX].sh_entsize = 8; continue; } } // 申請內存空間 dyn = (Elf32_Dyn*)malloc(dyn_size); // 獲取整個".dynamic"區節的數據(Elf32_Dyn[]數組) memcpy(dyn, buffer+dyn_off, dyn_size); i = 0; // 對".dynamic"區節的數據進行解析處理 for (; i < dyn_size / sizeof(Elf32_Dyn); i++) { switch (dyn[i].d_tag) { case DT_SYMTAB: // 對動態符號表 .dynsym 區節頭進行重建 shdr[DYNSYM].sh_name = strstr(str, ".dynsym") - str; shdr[DYNSYM].sh_type = SHT_DYNSYM; shdr[DYNSYM].sh_flags = SHF_ALLOC; shdr[DYNSYM].sh_addr = dyn[i].d_un.d_ptr; shdr[DYNSYM].sh_offset = dyn[i].d_un.d_ptr; shdr[DYNSYM].sh_link = 2; shdr[DYNSYM].sh_info = 1; shdr[DYNSYM].sh_addralign = 4; shdr[DYNSYM].sh_entsize = 16; // shdr[DYNSYM].sh_size還須要修復 break; case DT_STRTAB: // 對動態符號表 .dynstr 區節頭進行重建 shdr[DYNSTR].sh_name = strstr(str, ".dynstr") - str; shdr[DYNSTR].sh_type = SHT_STRTAB; shdr[DYNSTR].sh_flags = SHF_ALLOC; shdr[DYNSTR].sh_offset = dyn[i].d_un.d_ptr; shdr[DYNSTR].sh_addr = dyn[i].d_un.d_ptr; // 添加的 shdr[DYNSYM].sh_link = 0; shdr[DYNSYM].sh_info = 0; // shdr[DYNSTR].sh_addralign = 1; shdr[DYNSTR].sh_entsize = 0; break; case DT_HASH: // 對符號哈希表 .hash 的區節頭進行重建 shdr[HASH].sh_name = strstr(str, ".hash") - str; shdr[HASH].sh_type = SHT_HASH; shdr[HASH].sh_flags = SHF_ALLOC; shdr[HASH].sh_addr = dyn[i].d_un.d_ptr; shdr[HASH].sh_offset = dyn[i].d_un.d_ptr; memcpy(&nbucket, buffer + shdr[HASH].sh_offset, 4); memcpy(&nchain, buffer + shdr[HASH].sh_offset + 4, 4); // 和.hash區節的數據結構有關 shdr[HASH].sh_size = (nbucket + nchain + 2) * sizeof(int); shdr[HASH].sh_link = 1; shdr[HASH].sh_info = 0; shdr[HASH].sh_addralign = 4; shdr[HASH].sh_entsize = 4; break; case DT_REL: // 對 .rel.dyn 的區節頭進行重建 shdr[RELDYN].sh_name = strstr(str, ".rel.dyn") - str; shdr[RELDYN].sh_type = SHT_REL; shdr[RELDYN].sh_flags = SHF_ALLOC; shdr[RELDYN].sh_addr = dyn[i].d_un.d_ptr; shdr[RELDYN].sh_offset = dyn[i].d_un.d_ptr; shdr[RELDYN].sh_link = 1; shdr[RELDYN].sh_info = 0; shdr[RELDYN].sh_addralign = 4; shdr[RELDYN].sh_entsize = 8; break; case DT_JMPREL: // 對 .rel.plt 的區節頭進行重建 shdr[RELPLT].sh_name = strstr(str, ".rel.plt") - str; shdr[RELPLT].sh_type = SHT_REL; shdr[RELPLT].sh_flags = SHF_ALLOC; shdr[RELPLT].sh_addr = dyn[i].d_un.d_ptr; shdr[RELPLT].sh_offset = dyn[i].d_un.d_ptr; shdr[RELPLT].sh_link = 1; shdr[RELPLT].sh_info = 6; shdr[RELPLT].sh_addralign = 4; shdr[RELPLT].sh_entsize = 8; break; case DT_PLTRELSZ: shdr[RELPLT].sh_size = dyn[i].d_un.d_val; break; case DT_FINI: // 對.fini_array 的區節頭進行重建 shdr[FINIARRAY].sh_name = strstr(str, ".fini_array") - str; shdr[FINIARRAY].sh_type = SHT_FINI_ARRAY; shdr[FINIARRAY].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[FINIARRAY].sh_offset = dyn[i].d_un.d_ptr - 0x1000; shdr[FINIARRAY].sh_addr = dyn[i].d_un.d_ptr; shdr[FINIARRAY].sh_link = 0 shdr[FINIARRAY].sh_info = 0 shdr[FINIARRAY].sh_addralign = 4; shdr[FINIARRAY].sh_entsize = 0; break; case DT_INIT: // 對.init_array 的區節頭進行重建 shdr[INITARRAY].sh_name = strstr(str, ".init_array") - str; shdr[INITARRAY].sh_type = SHT_INIT_ARRAY; shdr[INITARRAY].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[INITARRAY].sh_offset = dyn[i].d_un.d_ptr - 0x1000; shdr[INITARRAY].sh_addr = dyn[i].d_un.d_ptr; shdr[INITARRAY].sh_link = 0; shdr[INITARRAY].sh_info = 0; shdr[INITARRAY].sh_addralign = 4; shdr[INITARRAY].sh_entsize = 0; break; case DT_RELSZ: shdr[RELDYN].sh_size = dyn[i].d_un.d_val; break; case DT_STRSZ: shdr[DYNSTR].sh_size = dyn[i].d_un.d_val; break; case DT_PLTGOT: // 對.got 的區節頭進行重建 shdr[GOT].sh_name = strstr(str, ".got") - str; shdr[GOT].sh_type = SHT_PROGBITS; shdr[GOT].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[GOT].sh_addr = shdr[DYNAMIC].sh_addr + shdr[DYNAMIC].sh_size; shdr[GOT].sh_offset = shdr[GOT].sh_addr - 0x1000; // 須要後面修正 shdr[GOT].sh_size = dyn[i].d_un.d_ptr; shdr[GOT].sh_link = 0; shdr[GOT].sh_info = 0; shdr[GOT].sh_addralign = 4; shdr[GOT].sh_entsize = 0; break; } } // .got區節數據的大小 shdr[GOT].sh_size = shdr[GOT].sh_size + 4 * (shdr[RELPLT].sh_size) / sizeof(Elf32_Rel) + 3 * sizeof(int) - shdr[GOT].sh_addr; //STRTAB地址 - SYMTAB地址 = SYMTAB大小 shdr[DYNSYM].sh_size = shdr[DYNSTR].sh_addr - shdr[DYNSYM].sh_addr; shdr[FINIARRAY].sh_size = shdr[INITARRAY].sh_addr - shdr[FINIARRAY].sh_addr; shdr[INITARRAY].sh_size = shdr[DYNAMIC].sh_addr - shdr[INITARRAY].sh_addr; // 對.plt 的區節頭進行重建 shdr[PLT].sh_name = strstr(str, ".plt") - str; shdr[PLT].sh_type = SHT_PROGBITS; shdr[PLT].sh_flags = SHF_ALLOC | SHF_EXECINSTR; shdr[PLT].sh_addr = shdr[RELPLT].sh_addr + shdr[RELPLT].sh_size; shdr[PLT].sh_offset = shdr[PLT].sh_addr; shdr[PLT].sh_size = (20 + 12 * (shdr[RELPLT].sh_size) / sizeof(Elf32_Rel)); shdr[PLT].sh_link = 0; shdr[PLT].sh_info = 0; shdr[PLT].sh_entsize = 0; shdr[PLT].sh_addralign = 4; // 對.text 的區節頭進行重建( .text 與 .ARM.text 區節暫時沒法分離開) shdr[TEXT].sh_name = strstr(str, ".text") - str; shdr[TEXT].sh_type = SHT_PROGBITS; shdr[TEXT].sh_flags = SHF_ALLOC | SHF_EXECINSTR; shdr[TEXT].sh_addr = shdr[PLT].sh_addr + shdr[PLT].sh_size; shdr[TEXT].sh_offset = shdr[TEXT].sh_addr; // 注意 shdr[TEXT].sh_size = shdr[ARMEXIDX].sh_addr - shdr[TEXT].sh_addr; shdr[TEXT].sh_link = 0 shdr[TEXT].sh_info = 0 shdr[TEXT].sh_entsize = 0 shdr[TEXT].sh_addralign = 4 // 對.data 的區節頭進行重建 shdr[DATA].sh_name = strstr(str, ".data") - str; shdr[DATA].sh_type = SHT_PROGBITS; shdr[DATA].sh_flags = SHF_WRITE | SHF_ALLOC; shdr[DATA].sh_addr = shdr[GOT].sh_addr + shdr[GOT].sh_size; shdr[DATA].sh_offset = shdr[DATA].sh_addr - 0x1000; shdr[DATA].sh_size = load.p_vaddr + load.p_filesz - shdr[DATA].sh_addr; shdr[DATA].sh_link = 0 shdr[DATA].sh_info = 0 shdr[DATA].sh_entsize = 0 shdr[DATA].sh_addralign = 4; // 對.shstrtab 區節頭的重建 shdr[STRTAB].sh_name = strstr(str, ".shstrtab") - str; shdr[STRTAB].sh_type = SHT_STRTAB; shdr[STRTAB].sh_flags = SHT_NULL; shdr[STRTAB].sh_addr = 0; shdr[STRTAB].sh_offset = shdr[BSS].sh_addr - 0x1000; shdr[STRTAB].sh_size = strlen(str) + 1; shdr[STRTAB].sh_link = 0; shdr[STRTAB].sh_info = 0; shdr[STRTAB].sh_entsize = 0; shdr[STRTAB].sh_addralign = 1; //memcpy(buffer + shdr[STRTAB].sh_offset, str, strlen(str)); // 將ELF文件的區節頭表信息拷貝到指定內存中 memcpy(*sh_buffer, shdr, sizeof(shdr)); } // main函數(ELF32的Android so的修復) // 一個傳入參數:須要修復的Android so文件路徑 // 例如: needFix.so,修復後的so文件名稱爲fix.so int main(int argc, char const *argv[]) { FILE* fr = NULL; long flen = 0; FILE* fw = NULL; int ph_len = 0; char* buffer = NULL; char* sh_buffer = NULL; Elf32_Ehdr *pehdr = NULL; Elf32_Phdr* pphdr = NULL; char arr[2048] = { 0 }; // 傳入參數檢查 if (argc < 2) { printf("less args\n"); return; } // 打開須要修復的Android so文件 fr = fopen(argv[1], "rb"); if(fr == NULL) { printf("Open failed: \n"); goto error; } // 獲取須要修復的Android so文件的大小 flen = get_file_len(fr); // 申請內存空間存放須要修復的Android so文件 buffer = (char*)malloc(sizeof(char)*flen); if (buffer == NULL) { printf("Malloc error\n"); goto error; } // 讀取須要整個修復的Android so文件到申請的內存空間中 size_t result = fread (buffer, 1, flen, fr); if (result != flen) { printf("Reading error\n"); goto error; } // 建立新文件 fix.so 用於保存修復後的Android so fw = fopen("fix.so","wb"); if(fw == NULL) { printf("Open failed: fix.so\n"); goto error; } pehdr = (Elf32_Ehdr*)malloc(sizeof(Elf32_Ehdr)); // 讀取ELF文件的Elf32_Ehdr信息到申請的內存空間中 get_elf_header(buffer, &pehdr); // 獲取ELF文件的程序頭Elf32_Phdr表的大小 ph_len = pehdr->e_phentsize * pehdr->e_phnum; pphdr = (Elf32_Phdr*)malloc(ph_len); // 讀取ELF文件的程序頭表的信息到申請的內存空間中 get_program_table(*pehdr, buffer, &pphdr); // 這個地方有一點問題 // 申請內存到用於存放ELF文件的區節頭表信息 sh_buffer = (char* )malloc(pehdr->e_shentsize * pehdr->e_shnum); // 進行須要修復的Android so的區節頭表的重建 get_Info(pphdr, pehdr, buffer, &sh_buffer, pehdr->e_shentsize * pehdr->e_shnum); // 將重建後的ELF文件的區節頭表信息進行回寫和更正 memcpy(buffer + pehdr->e_shoff, sh_buffer, pehdr->e_shentsize * pehdr->e_shnum); // 修復Android so文件的ELF文件頭中關於節頭表的信息 pehdr->e_shnum = SHDRS; pehdr->e_shstrndx = SHDRS - 1; memcpy(buffer, pehdr, sizeof(Elf32_Ehdr)); // SHSTRTAB // 新增.shstrtab 節數據到須要修復的Android so文件中 memcpy(buffer + shdr[STRTAB].sh_offset, str1, strlen(str) + 1); // 將修復的信息更新寫入到新的文件fix.so中 fwrite(buffer, sizeof(char)*flen, 1, fw); error: if(fw != NULL) fclose(fw); if(fr != NULL) fclose(fr); if(buffer != NULL) free(buffer); return 0; }
頭文件 elf.h 的代碼以下:
#ifndef _QEMU_ELF_H #define _QEMU_ELF_H #include <inttypes.h> /* 32-bit ELF base types. */ typedef uint32_t Elf32_Addr; typedef uint16_t Elf32_Half; typedef uint32_t Elf32_Off; typedef int32_t Elf32_Sword; typedef uint32_t Elf32_Word; /* 64-bit ELF base types. */ typedef uint64_t Elf64_Addr; typedef uint16_t Elf64_Half; typedef int16_t Elf64_SHalf; typedef uint64_t Elf64_Off; typedef int32_t Elf64_Sword; typedef uint32_t Elf64_Word; typedef uint64_t Elf64_Xword; typedef int64_t Elf64_Sxword; /* These constants are for the segment types stored in the image headers */ #define PT_NULL 0 #define PT_LOAD 1 #define PT_DYNAMIC 2 #define PT_INTERP 3 #define PT_NOTE 4 #define PT_SHLIB 5 #define PT_PHDR 6 #define PT_LOPROC 0x70000000 #define PT_HIPROC 0x7fffffff #define PT_MIPS_REGINFO 0x70000000 #define PT_MIPS_OPTIONS 0x70000001 /* Flags in the e_flags field of the header */ /* MIPS architecture level. */ #define EF_MIPS_ARCH_1 0x00000000 /* -mips1 code. */ #define EF_MIPS_ARCH_2 0x10000000 /* -mips2 code. */ #define EF_MIPS_ARCH_3 0x20000000 /* -mips3 code. */ #define EF_MIPS_ARCH_4 0x30000000 /* -mips4 code. */ #define EF_MIPS_ARCH_5 0x40000000 /* -mips5 code. */ #define EF_MIPS_ARCH_32 0x50000000 /* MIPS32 code. */ #define EF_MIPS_ARCH_64 0x60000000 /* MIPS64 code. */ /* The ABI of a file. */ #define EF_MIPS_ABI_O32 0x00001000 /* O32 ABI. */ #define EF_MIPS_ABI_O64 0x00002000 /* O32 extended for 64 bit. */ #define EF_MIPS_NOREORDER 0x00000001 #define EF_MIPS_PIC 0x00000002 #define EF_MIPS_CPIC 0x00000004 #define EF_MIPS_ABI2 0x00000020 #define EF_MIPS_OPTIONS_FIRST 0x00000080 #define EF_MIPS_32BITMODE 0x00000100 #define EF_MIPS_ABI 0x0000f000 #define EF_MIPS_ARCH 0xf0000000 /* These constants define the different elf file types */ #define ET_NONE 0 #define ET_REL 1 #define ET_EXEC 2 #define ET_DYN 3 #define ET_CORE 4 #define ET_LOPROC 0xff00 #define ET_HIPROC 0xffff /* These constants define the various ELF target machines */ #define EM_NONE 0 #define EM_M32 1 #define EM_SPARC 2 #define EM_386 3 #define EM_68K 4 #define EM_88K 5 #define EM_486 6 /* Perhaps disused */ #define EM_860 7 #define EM_MIPS 8 /* MIPS R3000 (officially, big-endian only) */ #define EM_MIPS_RS4_BE 10 /* MIPS R4000 big-endian */ #define EM_PARISC 15 /* HPPA */ #define EM_SPARC32PLUS 18 /* Sun's "v8plus" */ #define EM_PPC 20 /* PowerPC */ #define EM_PPC64 21 /* PowerPC64 */ #define EM_ARM 40 /* ARM */ #define EM_SH 42 /* SuperH */ #define EM_SPARCV9 43 /* SPARC v9 64-bit */ #define EM_IA_64 50 /* HP/Intel IA-64 */ #define EM_X86_64 62 /* AMD x86-64 */ #define EM_S390 22 /* IBM S/390 */ #define EM_CRIS 76 /* Axis Communications 32-bit embedded processor */ #define EM_V850 87 /* NEC v850 */ #define EM_H8_300H 47 /* Hitachi H8/300H */ #define EM_H8S 48 /* Hitachi H8S */ /* * This is an interim value that we will use until the committee comes * up with a final number. */ #define EM_ALPHA 0x9026 /* Bogus old v850 magic number, used by old tools. */ #define EM_CYGNUS_V850 0x9080 /* * This is the old interim value for S/390 architecture */ #define EM_S390_OLD 0xA390 /* This is the info that is needed to parse the dynamic section of the file */ #define DT_NULL 0 #define DT_NEEDED 1 #define DT_PLTRELSZ 2 #define DT_PLTGOT 3 #define DT_HASH 4 #define DT_STRTAB 5 #define DT_SYMTAB 6 #define DT_RELA 7 #define DT_RELASZ 8 #define DT_RELAENT 9 #define DT_STRSZ 10 #define DT_SYMENT 11 #define DT_INIT 25 #define DT_FINI 26 #define DT_SONAME 14 #define DT_RPATH 15 #define DT_SYMBOLIC 16 #define DT_REL 17 #define DT_RELSZ 18 #define DT_RELENT 19 #define DT_PLTREL 20 #define DT_DEBUG 21 #define DT_TEXTREL 22 #define DT_JMPREL 23 #define DT_LOPROC 0x70000000 #define DT_HIPROC 0x7fffffff #define DT_MIPS_RLD_VERSION 0x70000001 #define DT_MIPS_TIME_STAMP 0x70000002 #define DT_MIPS_ICHECKSUM 0x70000003 #define DT_MIPS_IVERSION 0x70000004 #define DT_MIPS_FLAGS 0x70000005 #define RHF_NONE 0 #define RHF_HARDWAY 1 #define RHF_NOTPOT 2 #define DT_MIPS_BASE_ADDRESS 0x70000006 #define DT_MIPS_CONFLICT 0x70000008 #define DT_MIPS_LIBLIST 0x70000009 #define DT_MIPS_LOCAL_GOTNO 0x7000000a #define DT_MIPS_CONFLICTNO 0x7000000b #define DT_MIPS_LIBLISTNO 0x70000010 #define DT_MIPS_SYMTABNO 0x70000011 #define DT_MIPS_UNREFEXTNO 0x70000012 #define DT_MIPS_GOTSYM 0x70000013 #define DT_MIPS_HIPAGENO 0x70000014 #define DT_MIPS_RLD_MAP 0x70000016 /* This info is needed when parsing the symbol table */ #define STB_LOCAL 0 #define STB_GLOBAL 1 #define STB_WEAK 2 #define STT_NOTYPE 0 #define STT_OBJECT 1 #define STT_FUNC 2 #define STT_SECTION 3 #define STT_FILE 4 #define ELF_ST_BIND(x) ((x) >> 4) #define ELF_ST_TYPE(x) (((unsigned int) x) & 0xf) #define ELF32_ST_BIND(x) ELF_ST_BIND(x) #define ELF32_ST_TYPE(x) ELF_ST_TYPE(x) #define ELF64_ST_BIND(x) ELF_ST_BIND(x) #define ELF64_ST_TYPE(x) ELF_ST_TYPE(x) /* Symbolic values for the entries in the auxiliary table put on the initial stack */ #define AT_NULL 0 /* end of vector */ #define AT_IGNORE 1 /* entry should be ignored */ #define AT_EXECFD 2 /* file descriptor of program */ #define AT_PHDR 3 /* program headers for program */ #define AT_PHENT 4 /* size of program header entry */ #define AT_PHNUM 5 /* number of program headers */ #define AT_PAGESZ 6 /* system page size */ #define AT_BASE 7 /* base address of interpreter */ #define AT_FLAGS 8 /* flags */ #define AT_ENTRY 9 /* entry point of program */ #define AT_NOTELF 10 /* program is not ELF */ #define AT_UID 11 /* real uid */ #define AT_EUID 12 /* effective uid */ #define AT_GID 13 /* real gid */ #define AT_EGID 14 /* effective gid */ #define AT_PLATFORM 15 /* string identifying CPU for optimizations */ #define AT_HWCAP 16 /* arch dependent hints at CPU capabilities */ #define AT_CLKTCK 17 /* frequency at which times() increments */ typedef struct dynamic{ Elf32_Sword d_tag; union{ Elf32_Sword d_val; Elf32_Addr d_ptr; } d_un; } Elf32_Dyn; typedef struct { Elf64_Sxword d_tag; /* entry tag value */ union { Elf64_Xword d_val; Elf64_Addr d_ptr; } d_un; } Elf64_Dyn; /* The following are used with relocations */ #define ELF32_R_SYM(x) ((x) >> 8) #define ELF32_R_TYPE(x) ((x) & 0xff) #define ELF64_R_SYM(i) ((i) >> 32) #define ELF64_R_TYPE(i) ((i) & 0xffffffff) #define ELF64_R_TYPE_DATA(i) (((ELF64_R_TYPE(i) >> 8) ^ 0x00800000) - 0x00800000) #define R_386_NONE 0 #define R_386_32 1 #define R_386_PC32 2 #define R_386_GOT32 3 #define R_386_PLT32 4 #define R_386_COPY 5 #define R_386_GLOB_DAT 6 #define R_386_JMP_SLOT 7 #define R_386_RELATIVE 8 #define R_386_GOTOFF 9 #define R_386_GOTPC 10 #define R_386_NUM 11 #define R_MIPS_NONE 0 #define R_MIPS_16 1 #define R_MIPS_32 2 #define R_MIPS_REL32 3 #define R_MIPS_26 4 #define R_MIPS_HI16 5 #define R_MIPS_LO16 6 #define R_MIPS_GPREL16 7 #define R_MIPS_LITERAL 8 #define R_MIPS_GOT16 9 #define R_MIPS_PC16 10 #define R_MIPS_CALL16 11 #define R_MIPS_GPREL32 12 /* The remaining relocs are defined on Irix, although they are not in the MIPS ELF ABI. */ #define R_MIPS_UNUSED1 13 #define R_MIPS_UNUSED2 14 #define R_MIPS_UNUSED3 15 #define R_MIPS_SHIFT5 16 #define R_MIPS_SHIFT6 17 #define R_MIPS_64 18 #define R_MIPS_GOT_DISP 19 #define R_MIPS_GOT_PAGE 20 #define R_MIPS_GOT_OFST 21 /* * The following two relocation types are specified in the MIPS ABI * conformance guide version 1.2 but not yet in the psABI. */ #define R_MIPS_GOTHI16 22 #define R_MIPS_GOTLO16 23 #define R_MIPS_SUB 24 #define R_MIPS_INSERT_A 25 #define R_MIPS_INSERT_B 26 #define R_MIPS_DELETE 27 #define R_MIPS_HIGHER 28 #define R_MIPS_HIGHEST 29 /* * The following two relocation types are specified in the MIPS ABI * conformance guide version 1.2 but not yet in the psABI. */ #define R_MIPS_CALLHI16 30 #define R_MIPS_CALLLO16 31 /* * This range is reserved for vendor specific relocations. */ #define R_MIPS_LOVENDOR 100 #define R_MIPS_HIVENDOR 127 /* * Sparc ELF relocation types */ #define R_SPARC_NONE 0 #define R_SPARC_8 1 #define R_SPARC_16 2 #define R_SPARC_32 3 #define R_SPARC_DISP8 4 #define R_SPARC_DISP16 5 #define R_SPARC_DISP32 6 #define R_SPARC_WDISP30 7 #define R_SPARC_WDISP22 8 #define R_SPARC_HI22 9 #define R_SPARC_22 10 #define R_SPARC_13 11 #define R_SPARC_LO10 12 #define R_SPARC_GOT10 13 #define R_SPARC_GOT13 14 #define R_SPARC_GOT22 15 #define R_SPARC_PC10 16 #define R_SPARC_PC22 17 #define R_SPARC_WPLT30 18 #define R_SPARC_COPY 19 #define R_SPARC_GLOB_DAT 20 #define R_SPARC_JMP_SLOT 21 #define R_SPARC_RELATIVE 22 #define R_SPARC_UA32 23 #define R_SPARC_PLT32 24 #define R_SPARC_HIPLT22 25 #define R_SPARC_LOPLT10 26 #define R_SPARC_PCPLT32 27 #define R_SPARC_PCPLT22 28 #define R_SPARC_PCPLT10 29 #define R_SPARC_10 30 #define R_SPARC_11 31 #define R_SPARC_64 32 #define R_SPARC_OLO10 33 #define R_SPARC_HH22 34 #define R_SPARC_HM10 35 #define R_SPARC_LM22 36 #define R_SPARC_WDISP16 40 #define R_SPARC_WDISP19 41 #define R_SPARC_7 43 #define R_SPARC_5 44 #define R_SPARC_6 45 /* Bits present in AT_HWCAP, primarily for Sparc32. */ #define HWCAP_SPARC_FLUSH 1 /* CPU supports flush instruction. */ #define HWCAP_SPARC_STBAR 2 #define HWCAP_SPARC_SWAP 4 #define HWCAP_SPARC_MULDIV 8 #define HWCAP_SPARC_V9 16 #define HWCAP_SPARC_ULTRA3 32 /* * 68k ELF relocation types */ #define R_68K_NONE 0 #define R_68K_32 1 #define R_68K_16 2 #define R_68K_8 3 #define R_68K_PC32 4 #define R_68K_PC16 5 #define R_68K_PC8 6 #define R_68K_GOT32 7 #define R_68K_GOT16 8 #define R_68K_GOT8 9 #define R_68K_GOT32O 10 #define R_68K_GOT16O 11 #define R_68K_GOT8O 12 #define R_68K_PLT32 13 #define R_68K_PLT16 14 #define R_68K_PLT8 15 #define R_68K_PLT32O 16 #define R_68K_PLT16O 17 #define R_68K_PLT8O 18 #define R_68K_COPY 19 #define R_68K_GLOB_DAT 20 #define R_68K_JMP_SLOT 21 #define R_68K_RELATIVE 22 /* * Alpha ELF relocation types */ #define R_ALPHA_NONE 0 /* No reloc */ #define R_ALPHA_REFLONG 1 /* Direct 32 bit */ #define R_ALPHA_REFQUAD 2 /* Direct 64 bit */ #define R_ALPHA_GPREL32 3 /* GP relative 32 bit */ #define R_ALPHA_LITERAL 4 /* GP relative 16 bit w/optimization */ #define R_ALPHA_LITUSE 5 /* Optimization hint for LITERAL */ #define R_ALPHA_GPDISP 6 /* Add displacement to GP */ #define R_ALPHA_BRADDR 7 /* PC+4 relative 23 bit shifted */ #define R_ALPHA_HINT 8 /* PC+4 relative 16 bit shifted */ #define R_ALPHA_SREL16 9 /* PC relative 16 bit */ #define R_ALPHA_SREL32 10 /* PC relative 32 bit */ #define R_ALPHA_SREL64 11 /* PC relative 64 bit */ #define R_ALPHA_GPRELHIGH 17 /* GP relative 32 bit, high 16 bits */ #define R_ALPHA_GPRELLOW 18 /* GP relative 32 bit, low 16 bits */ #define R_ALPHA_GPREL16 19 /* GP relative 16 bit */ #define R_ALPHA_COPY 24 /* Copy symbol at runtime */ #define R_ALPHA_GLOB_DAT 25 /* Create GOT entry */ #define R_ALPHA_JMP_SLOT 26 /* Create PLT entry */ #define R_ALPHA_RELATIVE 27 /* Adjust by program base */ #define R_ALPHA_BRSGP 28 #define R_ALPHA_TLSGD 29 #define R_ALPHA_TLS_LDM 30 #define R_ALPHA_DTPMOD64 31 #define R_ALPHA_GOTDTPREL 32 #define R_ALPHA_DTPREL64 33 #define R_ALPHA_DTPRELHI 34 #define R_ALPHA_DTPRELLO 35 #define R_ALPHA_DTPREL16 36 #define R_ALPHA_GOTTPREL 37 #define R_ALPHA_TPREL64 38 #define R_ALPHA_TPRELHI 39 #define R_ALPHA_TPRELLO 40 #define R_ALPHA_TPREL16 41 #define SHF_ALPHA_GPREL 0x10000000 /* PowerPC relocations defined by the ABIs */ #define R_PPC_NONE 0 #define R_PPC_ADDR32 1 /* 32bit absolute address */ #define R_PPC_ADDR24 2 /* 26bit address, 2 bits ignored. */ #define R_PPC_ADDR16 3 /* 16bit absolute address */ #define R_PPC_ADDR16_LO 4 /* lower 16bit of absolute address */ #define R_PPC_ADDR16_HI 5 /* high 16bit of absolute address */ #define R_PPC_ADDR16_HA 6 /* adjusted high 16bit */ #define R_PPC_ADDR14 7 /* 16bit address, 2 bits ignored */ #define R_PPC_ADDR14_BRTAKEN 8 #define R_PPC_ADDR14_BRNTAKEN 9 #define R_PPC_REL24 10 /* PC relative 26 bit */ #define R_PPC_REL14 11 /* PC relative 16 bit */ #define R_PPC_REL14_BRTAKEN 12 #define R_PPC_REL14_BRNTAKEN 13 #define R_PPC_GOT16 14 #define R_PPC_GOT16_LO 15 #define R_PPC_GOT16_HI 16 #define R_PPC_GOT16_HA 17 #define R_PPC_PLTREL24 18 #define R_PPC_COPY 19 #define R_PPC_GLOB_DAT 20 #define R_PPC_JMP_SLOT 21 #define R_PPC_RELATIVE 22 #define R_PPC_LOCAL24PC 23 #define R_PPC_UADDR32 24 #define R_PPC_UADDR16 25 #define R_PPC_REL32 26 #define R_PPC_PLT32 27 #define R_PPC_PLTREL32 28 #define R_PPC_PLT16_LO 29 #define R_PPC_PLT16_HI 30 #define R_PPC_PLT16_HA 31 #define R_PPC_SDAREL16 32 #define R_PPC_SECTOFF 33 #define R_PPC_SECTOFF_LO 34 #define R_PPC_SECTOFF_HI 35 #define R_PPC_SECTOFF_HA 36 /* Keep this the last entry. */ #define R_PPC_NUM 37 /* ARM specific declarations */ /* Processor specific flags for the ELF header e_flags field. */ #define EF_ARM_RELEXEC 0x01 #define EF_ARM_HASENTRY 0x02 #define EF_ARM_INTERWORK 0x04 #define EF_ARM_APCS_26 0x08 #define EF_ARM_APCS_FLOAT 0x10 #define EF_ARM_PIC 0x20 #define EF_ALIGN8 0x40 /* 8-bit structure alignment is in use */ #define EF_NEW_ABI 0x80 #define EF_OLD_ABI 0x100 /* Additional symbol types for Thumb */ #define STT_ARM_TFUNC 0xd /* ARM-specific values for sh_flags */ #define SHF_ARM_ENTRYSECT 0x10000000 /* Section contains an entry point */ #define SHF_ARM_COMDEF 0x80000000 /* Section may be multiply defined in the input to a link step */ /* ARM-specific program header flags */ #define PF_ARM_SB 0x10000000 /* Segment contains the location addressed by the static base */ /* ARM relocs. */ #define R_ARM_NONE 0 /* No reloc */ #define R_ARM_PC24 1 /* PC relative 26 bit branch */ #define R_ARM_ABS32 2 /* Direct 32 bit */ #define R_ARM_REL32 3 /* PC relative 32 bit */ #define R_ARM_PC13 4 #define R_ARM_ABS16 5 /* Direct 16 bit */ #define R_ARM_ABS12 6 /* Direct 12 bit */ #define R_ARM_THM_ABS5 7 #define R_ARM_ABS8 8 /* Direct 8 bit */ #define R_ARM_SBREL32 9 #define R_ARM_THM_PC22 10 #define R_ARM_THM_PC8 11 #define R_ARM_AMP_VCALL9 12 #define R_ARM_SWI24 13 #define R_ARM_THM_SWI8 14 #define R_ARM_XPC25 15 #define R_ARM_THM_XPC22 16 #define R_ARM_COPY 20 /* Copy symbol at runtime */ #define R_ARM_GLOB_DAT 21 /* Create GOT entry */ #define R_ARM_JUMP_SLOT 22 /* Create PLT entry */ #define R_ARM_RELATIVE 23 /* Adjust by program base */ #define R_ARM_GOTOFF 24 /* 32 bit offset to GOT */ #define R_ARM_GOTPC 25 /* 32 bit PC relative offset to GOT */ #define R_ARM_GOT32 26 /* 32 bit GOT entry */ #define R_ARM_PLT32 27 /* 32 bit PLT address */ #define R_ARM_CALL 28 #define R_ARM_JUMP24 29 #define R_ARM_GNU_VTENTRY 100 #define R_ARM_GNU_VTINHERIT 101 #define R_ARM_THM_PC11 102 /* thumb unconditional branch */ #define R_ARM_THM_PC9 103 /* thumb conditional branch */ #define R_ARM_RXPC25 249 #define R_ARM_RSBREL32 250 #define R_ARM_THM_RPC22 251 #define R_ARM_RREL32 252 #define R_ARM_RABS22 253 #define R_ARM_RPC24 254 #define R_ARM_RBASE 255 /* Keep this the last entry. */ #define R_ARM_NUM 256 /* s390 relocations defined by the ABIs */ #define R_390_NONE 0 /* No reloc. */ #define R_390_8 1 /* Direct 8 bit. */ #define R_390_12 2 /* Direct 12 bit. */ #define R_390_16 3 /* Direct 16 bit. */ #define R_390_32 4 /* Direct 32 bit. */ #define R_390_PC32 5 /* PC relative 32 bit. */ #define R_390_GOT12 6 /* 12 bit GOT offset. */ #define R_390_GOT32 7 /* 32 bit GOT offset. */ #define R_390_PLT32 8 /* 32 bit PC relative PLT address. */ #define R_390_COPY 9 /* Copy symbol at runtime. */ #define R_390_GLOB_DAT 10 /* Create GOT entry. */ #define R_390_JMP_SLOT 11 /* Create PLT entry. */ #define R_390_RELATIVE 12 /* Adjust by program base. */ #define R_390_GOTOFF32 13 /* 32 bit offset to GOT. */ #define R_390_GOTPC 14 /* 32 bit PC rel. offset to GOT. */ #define R_390_GOT16 15 /* 16 bit GOT offset. */ #define R_390_PC16 16 /* PC relative 16 bit. */ #define R_390_PC16DBL 17 /* PC relative 16 bit shifted by 1. */ #define R_390_PLT16DBL 18 /* 16 bit PC rel. PLT shifted by 1. */ #define R_390_PC32DBL 19 /* PC relative 32 bit shifted by 1. */ #define R_390_PLT32DBL 20 /* 32 bit PC rel. PLT shifted by 1. */ #define R_390_GOTPCDBL 21 /* 32 bit PC rel. GOT shifted by 1. */ #define R_390_64 22 /* Direct 64 bit. */ #define R_390_PC64 23 /* PC relative 64 bit. */ #define R_390_GOT64 24 /* 64 bit GOT offset. */ #define R_390_PLT64 25 /* 64 bit PC relative PLT address. */ #define R_390_GOTENT 26 /* 32 bit PC rel. to GOT entry >> 1. */ #define R_390_GOTOFF16 27 /* 16 bit offset to GOT. */ #define R_390_GOTOFF64 28 /* 64 bit offset to GOT. */ #define R_390_GOTPLT12 29 /* 12 bit offset to jump slot. */ #define R_390_GOTPLT16 30 /* 16 bit offset to jump slot. */ #define R_390_GOTPLT32 31 /* 32 bit offset to jump slot. */ #define R_390_GOTPLT64 32 /* 64 bit offset to jump slot. */ #define R_390_GOTPLTENT 33 /* 32 bit rel. offset to jump slot. */ #define R_390_PLTOFF16 34 /* 16 bit offset from GOT to PLT. */ #define R_390_PLTOFF32 35 /* 32 bit offset from GOT to PLT. */ #define R_390_PLTOFF64 36 /* 16 bit offset from GOT to PLT. */ #define R_390_TLS_LOAD 37 /* Tag for load insn in TLS code. */ #define R_390_TLS_GDCALL 38 /* Tag for function call in general dynamic TLS code. */ #define R_390_TLS_LDCALL 39 /* Tag for function call in local dynamic TLS code. */ #define R_390_TLS_GD32 40 /* Direct 32 bit for general dynamic thread local data. */ #define R_390_TLS_GD64 41 /* Direct 64 bit for general dynamic thread local data. */ #define R_390_TLS_GOTIE12 42 /* 12 bit GOT offset for static TLS block offset. */ #define R_390_TLS_GOTIE32 43 /* 32 bit GOT offset for static TLS block offset. */ #define R_390_TLS_GOTIE64 44 /* 64 bit GOT offset for static TLS block offset. */ #define R_390_TLS_LDM32 45 /* Direct 32 bit for local dynamic thread local data in LD code. */ #define R_390_TLS_LDM64 46 /* Direct 64 bit for local dynamic thread local data in LD code. */ #define R_390_TLS_IE32 47 /* 32 bit address of GOT entry for negated static TLS block offset. */ #define R_390_TLS_IE64 48 /* 64 bit address of GOT entry for negated static TLS block offset. */ #define R_390_TLS_IEENT 49 /* 32 bit rel. offset to GOT entry for negated static TLS block offset. */ #define R_390_TLS_LE32 50 /* 32 bit negated offset relative to static TLS block. */ #define R_390_TLS_LE64 51 /* 64 bit negated offset relative to static TLS block. */ #define R_390_TLS_LDO32 52 /* 32 bit offset relative to TLS block. */ #define R_390_TLS_LDO64 53 /* 64 bit offset relative to TLS block. */ #define R_390_TLS_DTPMOD 54 /* ID of module containing symbol. */ #define R_390_TLS_DTPOFF 55 /* Offset in TLS block. */ #define R_390_TLS_TPOFF 56 /* Negate offset in static TLS block. */ /* Keep this the last entry. */ #define R_390_NUM 57 /* x86-64 relocation types */ #define R_X86_64_NONE 0 /* No reloc */ #define R_X86_64_64 1 /* Direct 64 bit */ #define R_X86_64_PC32 2 /* PC relative 32 bit signed */ #define R_X86_64_GOT32 3 /* 32 bit GOT entry */ #define R_X86_64_PLT32 4 /* 32 bit PLT address */ #define R_X86_64_COPY 5 /* Copy symbol at runtime */ #define R_X86_64_GLOB_DAT 6 /* Create GOT entry */ #define R_X86_64_JUMP_SLOT 7 /* Create PLT entry */ #define R_X86_64_RELATIVE 8 /* Adjust by program base */ #define R_X86_64_GOTPCREL 9 /* 32 bit signed pc relative offset to GOT */ #define R_X86_64_32 10 /* Direct 32 bit zero extended */ #define R_X86_64_32S 11 /* Direct 32 bit sign extended */ #define R_X86_64_16 12 /* Direct 16 bit zero extended */ #define R_X86_64_PC16 13 /* 16 bit sign extended pc relative */ #define R_X86_64_8 14 /* Direct 8 bit sign extended */ #define R_X86_64_PC8 15 /* 8 bit sign extended pc relative */ #define R_X86_64_NUM 16 /* Legal values for e_flags field of Elf64_Ehdr. */ #define EF_ALPHA_32BIT 1 /* All addresses are below 2GB */ /* HPPA specific definitions. */ /* Legal values for e_flags field of Elf32_Ehdr. */ #define EF_PARISC_TRAPNIL 0x00010000 /* Trap nil pointer dereference. */ #define EF_PARISC_EXT 0x00020000 /* Program uses arch. extensions. */ #define EF_PARISC_LSB 0x00040000 /* Program expects little endian. */ #define EF_PARISC_WIDE 0x00080000 /* Program expects wide mode. */ #define EF_PARISC_NO_KABP 0x00100000 /* No kernel assisted branch prediction. */ #define EF_PARISC_LAZYSWAP 0x00400000 /* Allow lazy swapping. */ #define EF_PARISC_ARCH 0x0000ffff /* Architecture version. */ /* Defined values for `e_flags & EF_PARISC_ARCH' are: */ #define EFA_PARISC_1_0 0x020b /* PA-RISC 1.0 big-endian. */ #define EFA_PARISC_1_1 0x0210 /* PA-RISC 1.1 big-endian. */ #define EFA_PARISC_2_0 0x0214 /* PA-RISC 2.0 big-endian. */ /* Additional section indeces. */ #define SHN_PARISC_ANSI_COMMON 0xff00 /* Section for tenatively declared symbols in ANSI C. */ #define SHN_PARISC_HUGE_COMMON 0xff01 /* Common blocks in huge model. */ /* Legal values for sh_type field of Elf32_Shdr. */ #define SHT_PARISC_EXT 0x70000000 /* Contains product specific ext. */ #define SHT_PARISC_UNWIND 0x70000001 /* Unwind information. */ #define SHT_PARISC_DOC 0x70000002 /* Debug info for optimized code. */ /* Legal values for sh_flags field of Elf32_Shdr. */ #define SHF_PARISC_SHORT 0x20000000 /* Section with short addressing. */ #define SHF_PARISC_HUGE 0x40000000 /* Section far from gp. */ #define SHF_PARISC_SBP 0x80000000 /* Static branch prediction code. */ /* Legal values for ST_TYPE subfield of st_info (symbol type). */ #define STT_PARISC_MILLICODE 13 /* Millicode function entry point. */ #define STT_HP_OPAQUE (STT_LOOS + 0x1) #define STT_HP_STUB (STT_LOOS + 0x2) /* HPPA relocs. */ #define R_PARISC_NONE 0 /* No reloc. */ #define R_PARISC_DIR32 1 /* Direct 32-bit reference. */ #define R_PARISC_DIR21L 2 /* Left 21 bits of eff. address. */ #define R_PARISC_DIR17R 3 /* Right 17 bits of eff. address. */ #define R_PARISC_DIR17F 4 /* 17 bits of eff. address. */ #define R_PARISC_DIR14R 6 /* Right 14 bits of eff. address. */ #define R_PARISC_PCREL32 9 /* 32-bit rel. address. */ #define R_PARISC_PCREL21L 10 /* Left 21 bits of rel. address. */ #define R_PARISC_PCREL17R 11 /* Right 17 bits of rel. address. */ #define R_PARISC_PCREL17F 12 /* 17 bits of rel. address. */ #define R_PARISC_PCREL14R 14 /* Right 14 bits of rel. address. */ #define R_PARISC_DPREL21L 18 /* Left 21 bits of rel. address. */ #define R_PARISC_DPREL14R 22 /* Right 14 bits of rel. address. */ #define R_PARISC_GPREL21L 26 /* GP-relative, left 21 bits. */ #define R_PARISC_GPREL14R 30 /* GP-relative, right 14 bits. */ #define R_PARISC_LTOFF21L 34 /* LT-relative, left 21 bits. */ #define R_PARISC_LTOFF14R 38 /* LT-relative, right 14 bits. */ #define R_PARISC_SECREL32 41 /* 32 bits section rel. address. */ #define R_PARISC_SEGBASE 48 /* No relocation, set segment base. */ #define R_PARISC_SEGREL32 49 /* 32 bits segment rel. address. */ #define R_PARISC_PLTOFF21L 50 /* PLT rel. address, left 21 bits. */ #define R_PARISC_PLTOFF14R 54 /* PLT rel. address, right 14 bits. */ #define R_PARISC_LTOFF_FPTR32 57 /* 32 bits LT-rel. function pointer. */ #define R_PARISC_LTOFF_FPTR21L 58 /* LT-rel. fct ptr, left 21 bits. */ #define R_PARISC_LTOFF_FPTR14R 62 /* LT-rel. fct ptr, right 14 bits. */ #define R_PARISC_FPTR64 64 /* 64 bits function address. */ #define R_PARISC_PLABEL32 65 /* 32 bits function address. */ #define R_PARISC_PCREL64 72 /* 64 bits PC-rel. address. */ #define R_PARISC_PCREL22F 74 /* 22 bits PC-rel. address. */ #define R_PARISC_PCREL14WR 75 /* PC-rel. address, right 14 bits. */ #define R_PARISC_PCREL14DR 76 /* PC rel. address, right 14 bits. */ #define R_PARISC_PCREL16F 77 /* 16 bits PC-rel. address. */ #define R_PARISC_PCREL16WF 78 /* 16 bits PC-rel. address. */ #define R_PARISC_PCREL16DF 79 /* 16 bits PC-rel. address. */ #define R_PARISC_DIR64 80 /* 64 bits of eff. address. */ #define R_PARISC_DIR14WR 83 /* 14 bits of eff. address. */ #define R_PARISC_DIR14DR 84 /* 14 bits of eff. address. */ #define R_PARISC_DIR16F 85 /* 16 bits of eff. address. */ #define R_PARISC_DIR16WF 86 /* 16 bits of eff. address. */ #define R_PARISC_DIR16DF 87 /* 16 bits of eff. address. */ #define R_PARISC_GPREL64 88 /* 64 bits of GP-rel. address. */ #define R_PARISC_GPREL14WR 91 /* GP-rel. address, right 14 bits. */ #define R_PARISC_GPREL14DR 92 /* GP-rel. address, right 14 bits. */ #define R_PARISC_GPREL16F 93 /* 16 bits GP-rel. address. */ #define R_PARISC_GPREL16WF 94 /* 16 bits GP-rel. address. */ #define R_PARISC_GPREL16DF 95 /* 16 bits GP-rel. address. */ #define R_PARISC_LTOFF64 96 /* 64 bits LT-rel. address. */ #define R_PARISC_LTOFF14WR 99 /* LT-rel. address, right 14 bits. */ #define R_PARISC_LTOFF14DR 100 /* LT-rel. address, right 14 bits. */ #define R_PARISC_LTOFF16F 101 /* 16 bits LT-rel. address. */ #define R_PARISC_LTOFF16WF 102 /* 16 bits LT-rel. address. */ #define R_PARISC_LTOFF16DF 103 /* 16 bits LT-rel. address. */ #define R_PARISC_SECREL64 104 /* 64 bits section rel. address. */ #define R_PARISC_SEGREL64 112 /* 64 bits segment rel. address. */ #define R_PARISC_PLTOFF14WR 115 /* PLT-rel. address, right 14 bits. */ #define R_PARISC_PLTOFF14DR 116 /* PLT-rel. address, right 14 bits. */ #define R_PARISC_PLTOFF16F 117 /* 16 bits LT-rel. address. */ #define R_PARISC_PLTOFF16WF 118 /* 16 bits PLT-rel. address. */ #define R_PARISC_PLTOFF16DF 119 /* 16 bits PLT-rel. address. */ #define R_PARISC_LTOFF_FPTR64 120 /* 64 bits LT-rel. function ptr. */ #define R_PARISC_LTOFF_FPTR14WR 123 /* LT-rel. fct. ptr., right 14 bits. */ #define R_PARISC_LTOFF_FPTR14DR 124 /* LT-rel. fct. ptr., right 14 bits. */ #define R_PARISC_LTOFF_FPTR16F 125 /* 16 bits LT-rel. function ptr. */ #define R_PARISC_LTOFF_FPTR16WF 126 /* 16 bits LT-rel. function ptr. */ #define R_PARISC_LTOFF_FPTR16DF 127 /* 16 bits LT-rel. function ptr. */ #define R_PARISC_LORESERVE 128 #define R_PARISC_COPY 128 /* Copy relocation. */ #define R_PARISC_IPLT 129 /* Dynamic reloc, imported PLT */ #define R_PARISC_EPLT 130 /* Dynamic reloc, exported PLT */ #define R_PARISC_TPREL32 153 /* 32 bits TP-rel. address. */ #define R_PARISC_TPREL21L 154 /* TP-rel. address, left 21 bits. */ #define R_PARISC_TPREL14R 158 /* TP-rel. address, right 14 bits. */ #define R_PARISC_LTOFF_TP21L 162 /* LT-TP-rel. address, left 21 bits. */ #define R_PARISC_LTOFF_TP14R 166 /* LT-TP-rel. address, right 14 bits.*/ #define R_PARISC_LTOFF_TP14F 167 /* 14 bits LT-TP-rel. address. */ #define R_PARISC_TPREL64 216 /* 64 bits TP-rel. address. */ #define R_PARISC_TPREL14WR 219 /* TP-rel. address, right 14 bits. */ #define R_PARISC_TPREL14DR 220 /* TP-rel. address, right 14 bits. */ #define R_PARISC_TPREL16F 221 /* 16 bits TP-rel. address. */ #define R_PARISC_TPREL16WF 222 /* 16 bits TP-rel. address. */ #define R_PARISC_TPREL16DF 223 /* 16 bits TP-rel. address. */ #define R_PARISC_LTOFF_TP64 224 /* 64 bits LT-TP-rel. address. */ #define R_PARISC_LTOFF_TP14WR 227 /* LT-TP-rel. address, right 14 bits.*/ #define R_PARISC_LTOFF_TP14DR 228 /* LT-TP-rel. address, right 14 bits.*/ #define R_PARISC_LTOFF_TP16F 229 /* 16 bits LT-TP-rel. address. */ #define R_PARISC_LTOFF_TP16WF 230 /* 16 bits LT-TP-rel. address. */ #define R_PARISC_LTOFF_TP16DF 231 /* 16 bits LT-TP-rel. address. */ #define R_PARISC_HIRESERVE 255 /* Legal values for p_type field of Elf32_Phdr/Elf64_Phdr. */ #define PT_HP_TLS (PT_LOOS + 0x0) #define PT_HP_CORE_NONE (PT_LOOS + 0x1) #define PT_HP_CORE_VERSION (PT_LOOS + 0x2) #define PT_HP_CORE_KERNEL (PT_LOOS + 0x3) #define PT_HP_CORE_COMM (PT_LOOS + 0x4) #define PT_HP_CORE_PROC (PT_LOOS + 0x5) #define PT_HP_CORE_LOADABLE (PT_LOOS + 0x6) #define PT_HP_CORE_STACK (PT_LOOS + 0x7) #define PT_HP_CORE_SHM (PT_LOOS + 0x8) #define PT_HP_CORE_MMF (PT_LOOS + 0x9) #define PT_HP_PARALLEL (PT_LOOS + 0x10) #define PT_HP_FASTBIND (PT_LOOS + 0x11) #define PT_HP_OPT_ANNOT (PT_LOOS + 0x12) #define PT_HP_HSL_ANNOT (PT_LOOS + 0x13) #define PT_HP_STACK (PT_LOOS + 0x14) #define PT_PARISC_ARCHEXT 0x70000000 #define PT_PARISC_UNWIND 0x70000001 /* Legal values for p_flags field of Elf32_Phdr/Elf64_Phdr. */ #define PF_PARISC_SBP 0x08000000 #define PF_HP_PAGE_SIZE 0x00100000 #define PF_HP_FAR_SHARED 0x00200000 #define PF_HP_NEAR_SHARED 0x00400000 #define PF_HP_CODE 0x01000000 #define PF_HP_MODIFY 0x02000000 #define PF_HP_LAZYSWAP 0x04000000 #define PF_HP_SBP 0x08000000 /* IA-64 specific declarations. */ /* Processor specific flags for the Ehdr e_flags field. */ #define EF_IA_64_MASKOS 0x0000000f /* os-specific flags */ #define EF_IA_64_ABI64 0x00000010 /* 64-bit ABI */ #define EF_IA_64_ARCH 0xff000000 /* arch. version mask */ /* Processor specific values for the Phdr p_type field. */ #define PT_IA_64_ARCHEXT (PT_LOPROC + 0) /* arch extension bits */ #define PT_IA_64_UNWIND (PT_LOPROC + 1) /* ia64 unwind bits */ /* Processor specific flags for the Phdr p_flags field. */ #define PF_IA_64_NORECOV 0x80000000 /* spec insns w/o recovery */ /* Processor specific values for the Shdr sh_type field. */ #define SHT_IA_64_EXT (SHT_LOPROC + 0) /* extension bits */ #define SHT_IA_64_UNWIND (SHT_LOPROC + 1) /* unwind bits */ /* Processor specific flags for the Shdr sh_flags field. */ #define SHF_IA_64_SHORT 0x10000000 /* section near gp */ #define SHF_IA_64_NORECOV 0x20000000 /* spec insns w/o recovery */ /* Processor specific values for the Dyn d_tag field. */ #define DT_IA_64_PLT_RESERVE (DT_LOPROC + 0) #define DT_IA_64_NUM 1 /* IA-64 relocations. */ #define R_IA64_NONE 0x00 /* none */ #define R_IA64_IMM14 0x21 /* symbol + addend, add imm14 */ #define R_IA64_IMM22 0x22 /* symbol + addend, add imm22 */ #define R_IA64_IMM64 0x23 /* symbol + addend, mov imm64 */ #define R_IA64_DIR32MSB 0x24 /* symbol + addend, data4 MSB */ #define R_IA64_DIR32LSB 0x25 /* symbol + addend, data4 LSB */ #define R_IA64_DIR64MSB 0x26 /* symbol + addend, data8 MSB */ #define R_IA64_DIR64LSB 0x27 /* symbol + addend, data8 LSB */ #define R_IA64_GPREL22 0x2a /* @gprel(sym + add), add imm22 */ #define R_IA64_GPREL64I 0x2b /* @gprel(sym + add), mov imm64 */ #define R_IA64_GPREL32MSB 0x2c /* @gprel(sym + add), data4 MSB */ #define R_IA64_GPREL32LSB 0x2d /* @gprel(sym + add), data4 LSB */ #define R_IA64_GPREL64MSB 0x2e /* @gprel(sym + add), data8 MSB */ #define R_IA64_GPREL64LSB 0x2f /* @gprel(sym + add), data8 LSB */ #define R_IA64_LTOFF22 0x32 /* @ltoff(sym + add), add imm22 */ #define R_IA64_LTOFF64I 0x33 /* @ltoff(sym + add), mov imm64 */ #define R_IA64_PLTOFF22 0x3a /* @pltoff(sym + add), add imm22 */ #define R_IA64_PLTOFF64I 0x3b /* @pltoff(sym + add), mov imm64 */ #define R_IA64_PLTOFF64MSB 0x3e /* @pltoff(sym + add), data8 MSB */ #define R_IA64_PLTOFF64LSB 0x3f /* @pltoff(sym + add), data8 LSB */ #define R_IA64_FPTR64I 0x43 /* @fptr(sym + add), mov imm64 */ #define R_IA64_FPTR32MSB 0x44 /* @fptr(sym + add), data4 MSB */ #define R_IA64_FPTR32LSB 0x45 /* @fptr(sym + add), data4 LSB */ #define R_IA64_FPTR64MSB 0x46 /* @fptr(sym + add), data8 MSB */ #define R_IA64_FPTR64LSB 0x47 /* @fptr(sym + add), data8 LSB */ #define R_IA64_PCREL60B 0x48 /* @pcrel(sym + add), brl */ #define R_IA64_PCREL21B 0x49 /* @pcrel(sym + add), ptb, call */ #define R_IA64_PCREL21M 0x4a /* @pcrel(sym + add), chk.s */ #define R_IA64_PCREL21F 0x4b /* @pcrel(sym + add), fchkf */ #define R_IA64_PCREL32MSB 0x4c /* @pcrel(sym + add), data4 MSB */ #define R_IA64_PCREL32LSB 0x4d /* @pcrel(sym + add), data4 LSB */ #define R_IA64_PCREL64MSB 0x4e /* @pcrel(sym + add), data8 MSB */ #define R_IA64_PCREL64LSB 0x4f /* @pcrel(sym + add), data8 LSB */ #define R_IA64_LTOFF_FPTR22 0x52 /* @ltoff(@fptr(s+a)), imm22 */ #define R_IA64_LTOFF_FPTR64I 0x53 /* @ltoff(@fptr(s+a)), imm64 */ #define R_IA64_LTOFF_FPTR32MSB 0x54 /* @ltoff(@fptr(s+a)), data4 MSB */ #define R_IA64_LTOFF_FPTR32LSB 0x55 /* @ltoff(@fptr(s+a)), data4 LSB */ #define R_IA64_LTOFF_FPTR64MSB 0x56 /* @ltoff(@fptr(s+a)), data8 MSB */ #define R_IA64_LTOFF_FPTR64LSB 0x57 /* @ltoff(@fptr(s+a)), data8 LSB */ #define R_IA64_SEGREL32MSB 0x5c /* @segrel(sym + add), data4 MSB */ #define R_IA64_SEGREL32LSB 0x5d /* @segrel(sym + add), data4 LSB */ #define R_IA64_SEGREL64MSB 0x5e /* @segrel(sym + add), data8 MSB */ #define R_IA64_SEGREL64LSB 0x5f /* @segrel(sym + add), data8 LSB */ #define R_IA64_SECREL32MSB 0x64 /* @secrel(sym + add), data4 MSB */ #define R_IA64_SECREL32LSB 0x65 /* @secrel(sym + add), data4 LSB */ #define R_IA64_SECREL64MSB 0x66 /* @secrel(sym + add), data8 MSB */ #define R_IA64_SECREL64LSB 0x67 /* @secrel(sym + add), data8 LSB */ #define R_IA64_REL32MSB 0x6c /* data 4 + REL */ #define R_IA64_REL32LSB 0x6d /* data 4 + REL */ #define R_IA64_REL64MSB 0x6e /* data 8 + REL */ #define R_IA64_REL64LSB 0x6f /* data 8 + REL */ #define R_IA64_LTV32MSB 0x74 /* symbol + addend, data4 MSB */ #define R_IA64_LTV32LSB 0x75 /* symbol + addend, data4 LSB */ #define R_IA64_LTV64MSB 0x76 /* symbol + addend, data8 MSB */ #define R_IA64_LTV64LSB 0x77 /* symbol + addend, data8 LSB */ #define R_IA64_PCREL21BI 0x79 /* @pcrel(sym + add), 21bit inst */ #define R_IA64_PCREL22 0x7a /* @pcrel(sym + add), 22bit inst */ #define R_IA64_PCREL64I 0x7b /* @pcrel(sym + add), 64bit inst */ #define R_IA64_IPLTMSB 0x80 /* dynamic reloc, imported PLT, MSB */ #define R_IA64_IPLTLSB 0x81 /* dynamic reloc, imported PLT, LSB */ #define R_IA64_COPY 0x84 /* copy relocation */ #define R_IA64_SUB 0x85 /* Addend and symbol difference */ #define R_IA64_LTOFF22X 0x86 /* LTOFF22, relaxable. */ #define R_IA64_LDXMOV 0x87 /* Use of LTOFF22X. */ #define R_IA64_TPREL14 0x91 /* @tprel(sym + add), imm14 */ #define R_IA64_TPREL22 0x92 /* @tprel(sym + add), imm22 */ #define R_IA64_TPREL64I 0x93 /* @tprel(sym + add), imm64 */ #define R_IA64_TPREL64MSB 0x96 /* @tprel(sym + add), data8 MSB */ #define R_IA64_TPREL64LSB 0x97 /* @tprel(sym + add), data8 LSB */ #define R_IA64_LTOFF_TPREL22 0x9a /* @ltoff(@tprel(s+a)), imm2 */ #define R_IA64_DTPMOD64MSB 0xa6 /* @dtpmod(sym + add), data8 MSB */ #define R_IA64_DTPMOD64LSB 0xa7 /* @dtpmod(sym + add), data8 LSB */ #define R_IA64_LTOFF_DTPMOD22 0xaa /* @ltoff(@dtpmod(sym + add)), imm22 */ #define R_IA64_DTPREL14 0xb1 /* @dtprel(sym + add), imm14 */ #define R_IA64_DTPREL22 0xb2 /* @dtprel(sym + add), imm22 */ #define R_IA64_DTPREL64I 0xb3 /* @dtprel(sym + add), imm64 */ #define R_IA64_DTPREL32MSB 0xb4 /* @dtprel(sym + add), data4 MSB */ #define R_IA64_DTPREL32LSB 0xb5 /* @dtprel(sym + add), data4 LSB */ #define R_IA64_DTPREL64MSB 0xb6 /* @dtprel(sym + add), data8 MSB */ #define R_IA64_DTPREL64LSB 0xb7 /* @dtprel(sym + add), data8 LSB */ #define R_IA64_LTOFF_DTPREL22 0xba /* @ltoff(@dtprel(s+a)), imm22 */ typedef struct elf32_rel { Elf32_Addr r_offset; Elf32_Word r_info; } Elf32_Rel; typedef struct elf64_rel { Elf64_Addr r_offset; /* Location at which to apply the action */ Elf64_Xword r_info; /* index and type of relocation */ } Elf64_Rel; typedef struct elf32_rela{ Elf32_Addr r_offset; Elf32_Word r_info; Elf32_Sword r_addend; } Elf32_Rela; typedef struct elf64_rela { Elf64_Addr r_offset; /* Location at which to apply the action */ Elf64_Xword r_info; /* index and type of relocation */ Elf64_Sxword r_addend; /* Constant addend used to compute value */ } Elf64_Rela; typedef struct elf32_sym{ Elf32_Word st_name; Elf32_Addr st_value; Elf32_Word st_size; unsigned char st_info; unsigned char st_other; Elf32_Half st_shndx; } Elf32_Sym; typedef struct elf64_sym { Elf64_Word st_name; /* Symbol name, index in string tbl */ unsigned char st_info; /* Type and binding attributes */ unsigned char st_other; /* No defined meaning, 0 */ Elf64_Half st_shndx; /* Associated section index */ Elf64_Addr st_value; /* Value of the symbol */ Elf64_Xword st_size; /* Associated symbol size */ } Elf64_Sym; #define EI_NIDENT 16 typedef struct elf32_hdr{ unsigned char e_ident[EI_NIDENT]; Elf32_Half e_type; Elf32_Half e_machine; Elf32_Word e_version; Elf32_Addr e_entry; /* Entry point */ Elf32_Off e_phoff; Elf32_Off e_shoff; Elf32_Word e_flags; Elf32_Half e_ehsize; Elf32_Half e_phentsize; Elf32_Half e_phnum; Elf32_Half e_shentsize; Elf32_Half e_shnum; Elf32_Half e_shstrndx; } Elf32_Ehdr; typedef struct elf64_hdr { unsigned char e_ident[16]; /* ELF "magic number" */ Elf64_Half e_type; Elf64_Half e_machine; Elf64_Word e_version; Elf64_Addr e_entry; /* Entry point virtual address */ Elf64_Off e_phoff; /* Program header table file offset */ Elf64_Off e_shoff; /* Section header table file offset */ Elf64_Word e_flags; Elf64_Half e_ehsize; Elf64_Half e_phentsize; Elf64_Half e_phnum; Elf64_Half e_shentsize; Elf64_Half e_shnum; Elf64_Half e_shstrndx; } Elf64_Ehdr; /* These constants define the permissions on sections in the program header, p_flags. */ #define PF_R 0x4 #define PF_W 0x2 #define PF_X 0x1 typedef struct elf32_phdr{ Elf32_Word p_type; Elf32_Off p_offset; Elf32_Addr p_vaddr; Elf32_Addr p_paddr; Elf32_Word p_filesz; Elf32_Word p_memsz; Elf32_Word p_flags; Elf32_Word p_align; } Elf32_Phdr; typedef struct elf64_phdr { Elf64_Word p_type; Elf64_Word p_flags; Elf64_Off p_offset; /* Segment file offset */ Elf64_Addr p_vaddr; /* Segment virtual address */ Elf64_Addr p_paddr; /* Segment physical address */ Elf64_Xword p_filesz; /* Segment size in file */ Elf64_Xword p_memsz; /* Segment size in memory */ Elf64_Xword p_align; /* Segment alignment, file & memory */ } Elf64_Phdr; /* sh_type */ #define SHT_NULL 0 #define SHT_PROGBITS 1 #define SHT_SYMTAB 2 #define SHT_STRTAB 3 #define SHT_RELA 4 #define SHT_HASH 5 #define SHT_DYNAMIC 6 #define SHT_NOTE 7 #define SHT_NOBITS 8 #define SHT_REL 9 #define SHT_SHLIB 10 #define SHT_DYNSYM 11 #define SHT_NUM 12 #define SHT_LOPROC 0x70000000 #define SHT_HIPROC 0x7fffffff #define SHT_LOUSER 0x80000000 #define SHT_HIUSER 0xffffffff #define SHT_MIPS_LIST 0x70000000 #define SHT_MIPS_CONFLICT 0x70000002 #define SHT_MIPS_GPTAB 0x70000003 #define SHT_MIPS_UCODE 0x70000004 /* sh_flags */ #define SHF_WRITE 0x1 #define SHF_ALLOC 0x2 #define SHF_EXECINSTR 0x4 #define SHF_MASKPROC 0xf0000000 #define SHF_MIPS_GPREL 0x10000000 /* special section indexes */ #define SHN_UNDEF 0 #define SHN_LORESERVE 0xff00 #define SHN_LOPROC 0xff00 #define SHN_HIPROC 0xff1f #define SHN_ABS 0xfff1 #define SHN_COMMON 0xfff2 #define SHN_HIRESERVE 0xffff #define SHN_MIPS_ACCOMON 0xff00 typedef struct elf32_shdr { Elf32_Word sh_name; Elf32_Word sh_type; Elf32_Word sh_flags; Elf32_Addr sh_addr; Elf32_Off sh_offset; Elf32_Word sh_size; Elf32_Word sh_link; Elf32_Word sh_info; Elf32_Word sh_addralign; Elf32_Word sh_entsize; } Elf32_Shdr; typedef struct elf64_shdr { Elf64_Word sh_name; /* Section name, index in string tbl */ Elf64_Word sh_type; /* Type of section */ Elf64_Xword sh_flags; /* Miscellaneous section attributes */ Elf64_Addr sh_addr; /* Section virtual addr at execution */ Elf64_Off sh_offset; /* Section file offset */ Elf64_Xword sh_size; /* Size of section in bytes */ Elf64_Word sh_link; /* Index of another section */ Elf64_Word sh_info; /* Additional section information */ Elf64_Xword sh_addralign; /* Section alignment */ Elf64_Xword sh_entsize; /* Entry size if section holds table */ } Elf64_Shdr; #define EI_MAG0 0 /* e_ident[] indexes */ #define EI_MAG1 1 #define EI_MAG2 2 #define EI_MAG3 3 #define EI_CLASS 4 #define EI_DATA 5 #define EI_VERSION 6 #define EI_PAD 7 #define ELFMAG0 0x7f /* EI_MAG */ #define ELFMAG1 'E' #define ELFMAG2 'L' #define ELFMAG3 'F' #define ELFMAG "177ELF" #define SELFMAG 4 #define ELFCLASSNONE 0 /* EI_CLASS */ #define ELFCLASS32 1 #define ELFCLASS64 2 #define ELFCLASSNUM 3 #define ELFDATANONE 0 /* e_ident[EI_DATA] */ #define ELFDATA2LSB 1 #define ELFDATA2MSB 2 #define EV_NONE 0 /* e_version, EI_VERSION */ #define EV_CURRENT 1 #define EV_NUM 2 /* Notes used in ET_CORE */ #define NT_PRSTATUS 1 #define NT_PRFPREG 2 #define NT_PRPSINFO 3 #define NT_TASKSTRUCT 4 #define NT_PRXFPREG 0x46e62b7f /* copied from gdb5.1/include/elf/common.h */ /* Note header in a PT_NOTE section */ typedef struct elf32_note { Elf32_Word n_namesz; /* Name size */ Elf32_Word n_descsz; /* Content size */ Elf32_Word n_type; /* Content type */ } Elf32_Nhdr; /* Note header in a PT_NOTE section */ typedef struct elf64_note { Elf64_Word n_namesz; /* Name size */ Elf64_Word n_descsz; /* Content size */ Elf64_Word n_type; /* Content type */ } Elf64_Nhdr; #if ELF_CLASS == ELFCLASS32 #define elfhdr elf32_hdr #define elf_phdr elf32_phdr #define elf_note elf32_note #define elf_shdr elf32_shdr #define elf_sym elf32_sym #define elf_addr_t Elf32_Off #ifdef ELF_USES_RELOCA # define ELF_RELOC Elf32_Rela #else # define ELF_RELOC Elf32_Rel #endif #else #define elfhdr elf64_hdr #define elf_phdr elf64_phdr #define elf_note elf64_note #define elf_shdr elf64_shdr #define elf_sym elf64_sym #define elf_addr_t Elf64_Off #ifdef ELF_USES_RELOCA # define ELF_RELOC Elf64_Rela #else # define ELF_RELOC Elf64_Rel #endif #endif /* ELF_CLASS */ #ifndef ElfW # if ELF_CLASS == ELFCLASS32 # define ElfW(x) Elf32_ ## x # define ELFW(x) ELF32_ ## x # else # define ElfW(x) Elf64_ ## x # define ELFW(x) ELF64_ ## x # endif #endif #endif /* _QEMU_ELF_H */
頭文件 fix.h 的代碼以下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include "elf.h" #define SHDRS 16 /* .dynsym .dynstr .hash .rel.dyn .rel.plt .plt .text .ARM.extab .ARM.exidx .fini_array .init_array .dynamic .got .data */ #define NONE 0 #define DYNSYM 1 #define DYNSTR 2 #define HASH 3 #define RELDYN 4 #define RELPLT 5 #define PLT 6 #define TEXT 7 #define ARMEXIDX 8 #define FINIARRAY 9 #define INITARRAY 10 #define DYNAMIC 11 #define GOT 12 #define DATA 13 #define BSS 14 #define STRTAB 15 //